[1] C. Ramshaw, R.H. Mallinson, Mass transfer process, U.S. Patent 4,283,255, (1981). [2] Y. Luo, G.W. Chu, H.K. Zou, Z.Q. Zhao, M.P. Dudukovic, J.F. Chen, Gas-liquid effective interfacial area in a rotating packed bed, Ind. Eng. Chem. Res. 51(2012) 16320-16325. [3] S. Rajan, M. Kumar, M.J. Ansari, et al., Limiting gas liquid flows and mass transfer in a novel rotating packed bed (Higee), Ind. Eng. Chem. Res. 50(2011) 986-997. [4] H. Zhao, L. Shao, J.F. Chen, High-gravity process intensification technology and application, Chem. Eng. J. 156(2010) 588-593. [5] S.K. Dhiman, V. Verma, D.P. Rao, M.S. Rao, Process intensification in a trickle-bed reactor:experimental studies, AIChE J. 51(2005) 3186-3192. [6] C.C. Chang, C.Y. Chiu, C.Y. Chang, C.F. Chang, Y.H. Chen, D.R. Ji, J.Y. Tseng, Y.H. Yu, Ptcatalyzed ozonation of aqueous phenol solution using high-gravity rotating packed bed, J. Hazard. Mater. 168(2009) 649-655. [7] K. Gudena, G.P. Rangaiah, S. Lakshminarayanan, Modeling and analysis of solid catalyzed reactive HiGee stripping, Chem. Eng. Sci. 80(2012) 242-252. [8] Y.Z. Liu, Y. Luo, G.W. Chu, J.F. Chen, Monolithic catalysts with Pd deposited on a structured nickel foam packing, Catal. Today 273(2016) 34-40. [9] F. Yang, D.S. Wang, Y.Z. Liu, G.W. Chu, Y. Luo, J.F. Chen, Porous PdO-flower induced by nano-microstructure on monolith with traditional immersion-pyrolysis technique for hydrogenation, Ind. Eng. Chem. Res. 58(2019) 14646-14654. [10] X.H. Zheng, G.W. Chu, D.J. Kong, Y. Luo, J.P. Zhang, H.K. Zou, L.L. Zhang, J.F. Chen, Mass transfer intensification in a rotating packed bed with surface-modified nickel foam packing, Chem. Eng. J. 285(2016) 236-242. [11] M.J. Su, Y. Luo, G.W. Chu, W. Liu, X.H. Zheng, J.F. Chen, Gas-side mass transfer in a rotating packed bed with structured nickel foam packing, Ind. Eng. Chem. Res. 57(2018) 4743-4747. [12] C. Yang, A.R. Teixeira, Y. Si, S.C. Born, H. Lin, Y.L. Song, M. Peer, B. Martin, B. Schenkel, K.F. Jensen, Catalytic hydrogenation of N-4-nitrophenyl nicotinamide in a micropacked bed reactor, Green Chem. 20(2018) 886-893. [13] S. Munjal, M.P. Duduković, P. Ramachandran, Mass-transfer in rotating packed beds -I. Development of gas-liquid and liquid-solid mass-transfer correlations, Chem. Eng. Sci. 44(1989) 2245-2256. [14] L.B. Datsevich, D.A. Mukhortov, Pre-saturation in multiphase fixed-bed reactors as a method for process intensification/reactor minimization, Catal. Today 120(2007) 71-77. [15] Y.Z. Liu, Y. Luo, G.W. Chu, W. Liu, L. Shao, J.F. Chen, Liquid holdup and wetting efficiency in a rotating trickle-bed reactor, AIChE J. 65(2019) e16618. [16] A. Inayat, H. Freund, T. Zeiser, W. Schwieger, Determining the specific surface area of ceramic foams:the tetrakaidecahedra model revisited, Chem. Eng. Sci. 66(2011) 1179-1188. [17] F. Turek, R. Lange, Mass transfer in trickle-bed reactors at low Reynolds number, Chem. Eng. Sci. 36(1981) 569-579. [18] R. Langsch, J. Zalucky, S. Haase, R. Lange, Investigation of a packed bed in a mini channel with a low channel-to-particle diameter ratio:flow regimes and mass transfer in gas-liquid operation, Chem. Eng. Process. 75(2014) 8-18. [19] S. Haase, M. Weiss, R. Langsch, T. Bauer, R. Lange, Hydrodynamics and mass transfer in three-phase composite minichannel fixed-bed reactors, Chem. Eng. Sci. 94(2013) 224-236. [20] P.W.A.M. Wenmakers, J. van der Schaaf, B.F.M. Kuster, J.C. Schouten, Liquid-solid mass transfer for cocurrent gas-liquid upflow through solid foam packings, AICHE J. 56(2010) 2923-2933. [21] R. Tschentscher, R.J.P. Spijkers, T.A. Nijhuis, J. van der Schaaf, J.C. Schouten, Liquidsolid mass transfer in agitated slurry reactors and rotating solid foam reactors, Ind. Eng. Chem. Res. 49(2010) 10758-10766. [22] B. Tidona, S. Desportes, M. Altheimer, K. Ninck, P.R. von Rohr, Liquid-to-particle mass transfer in a micro packed bed reactor, Int. J. Heat Mass Transf. 55(2012) 522-530. [23] M.H. Abdel-Aziz, I.A.S. Mansour, G.H. Sedahmed, Study of the rate of liquid-solid mass transfer controlled processes in helical tubes under turbulent flow conditions, Chem. Eng. Process. 49(2010) 643-648. [24] M. Yekta-Fard, A.B. Ponter, Surface treatment and its influence on contact angles of water drops residing on polymers and metals, Phys. Chem. Liq. 15(1985) 19-30. [25] J. Grosse, B. Dietrich, G.I. Garrido, P. Habisreuther, N. Zarzalis, H. Martin, M. Kind, B. Kraushaar-Czarnetzki, Morphological characterization of ceramic sponges for applications in chemical engineering, Ind. Eng. Chem. Res. 48(2009) 10395-10401. [26] R.W. Fahien, Fundamentals of Transport Phenomena, McGraw-Hill, 1983. |