Chinese Journal of Chemical Engineering ›› 2020, Vol. 28 ›› Issue (10): 2499-2506.DOI: 10.1016/j.cjche.2020.06.040
• Reviews • Next Articles
Zheyu Wang1, Yupei Jian1, Yilei Han1, Zhongwang Fu1, Diannan Lu1, Jianzhong Wu2, Zheng Liu1
Received:
2020-04-15
Revised:
2020-06-03
Online:
2020-12-03
Published:
2020-10-28
Contact:
Jianzhong Wu, Zheng Liu
Zheyu Wang1, Yupei Jian1, Yilei Han1, Zhongwang Fu1, Diannan Lu1, Jianzhong Wu2, Zheng Liu1
通讯作者:
Jianzhong Wu, Zheng Liu
Zheyu Wang, Yupei Jian, Yilei Han, Zhongwang Fu, Diannan Lu, Jianzhong Wu, Zheng Liu. Recent progress in enzymatic functionalization of carbon-hydrogen bonds for the green synthesis of chemicals[J]. Chinese Journal of Chemical Engineering, 2020, 28(10): 2499-2506.
Zheyu Wang, Yupei Jian, Yilei Han, Zhongwang Fu, Diannan Lu, Jianzhong Wu, Zheng Liu. Recent progress in enzymatic functionalization of carbon-hydrogen bonds for the green synthesis of chemicals[J]. 中国化学工程学报, 2020, 28(10): 2499-2506.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2020.06.040
[1] X.J. Cui, H.B. Li, Y. Wang, Y.L. Hu, L. Hua, H.Y. Li, X.W. Han, Q.F. Liu, F. Yang, L.M. He, X.Q. Chen, Q.Y. Li, J.P. Xiao, D.H. Deng, X.H. Bao, Room-temperature methane conversion by graphene-confined single iron atoms, Chem 4(8) (2018) 1902-1910. [2] B. Moden, B.Z. Zhan, J. Dakka, J.G. Santiesteban, E. Iglesia, Kinetics and mechanism of cyclohexane oxidation on MnAPO-5 catalysts, J. Catal. 239(2) (2006) 390-401. [3] K.B. Feng, R.E. Quevedo, J.T. Kohrt, M.S. Oderinde, U. Reilly, M.C. White, Late-stage oxidative C(sp3)-H methylation, Nature 580(7805) (2020) 621-627. [4] Y.B. Liu, H.B. Ge, Site-selective C-H arylation of primary aliphatic amines enabled by a catalytic transient directing group, Nat. Chem. 9(1) (2017) 26-32. [5] M. Conte, X. Liu, D.M. Murphy, K. Whiston, G.J. Hutchings, Cyclohexane oxidation using Au/MgO:an investigation of the reaction mechanism, Phys. Chem. Chem. Phys. 14(47) (2012) 16279-16285. [6] P.R.O. de Montellano, Hydrocarbon hydroxylation by cytochrome P450 enzymes, Chem. Rev. 110(2) (2010) 932-948. [7] J.C. Lewis, P.S. Coelho, F.H. Arnold, Enzymatic functionalization of carbon-hydrogen bonds, Chem. Soc. Rev. 40(4) (2011) 2003-2021. [8] F.Z. Li, X. Zhang, H. Renata, Enzymatic C-H functionalizations for natural product synthesis, Curr. Opin. Chem. Biol. 49(2019) 25-32. [9] R.J.K. Zhang, X.Y. Huang, F.H. Arnold, Selective C-H bond functionalization with engineered heme proteins:new tools to generate complexity, Curr. Opin. Chem. Biol. 49(2019) 67-75. [10] M.R. Bauerle, E.L. Schwalm, S.J. Booker, Mechanistic diversity of radical SAdenosylmethionine (SAM)-dependent methylation, J. Biol. Chem. 290(7) (2015) 3995-4002. [11] M.I. McLaughlin, W.A. van der Donk, Stereospecific radical-mediated B-12-dependent methyl transfer by the fosfomycin biosynthesis enzyme Fom3, Biochemistry 57(33) (2018) 4967-4971. [12] F.P. Guengerich, Common and uncommon cytochrome P450 reactions related to metabolism and chemical toxicity, Chem. Res. Toxicol. 14(6) (2001) 611-650. [13] X.G. Zhou, X.Q. Yu, J.S. Huang, C.M. Che, Asymmetric amidation of saturated C-H bonds catalysed by chiral ruthenium and manganese porphyrins, Chem. Commun. (23) (1999) 2377-2378. [14] C.K. Prier, R.J.K. Zhang, A.R. Buller, S.B. Chen, F.H. Arnold, Enantioselective, intermolecular benzylic C-H amination catalysed by an engineered iron-haem enzyme, Nat. Chem. 9(7) (2017) 629-634. [15] F.E. Zilly, J.P. Acevedo, W. Augustyniak, A. Deege, U.W. Häusig, M.T. Reetz, Tuning a P450 Enzyme for Methane Oxidation, Angew. Chem., Int. Ed. 50(12) (2011) 2720-2724. [16] M.W. Peters, P. Meinhold, A. Glieder, F.H. Arnold, Regio-and enantioselective alkane hydroxylation with engineered cytochromes P450 BM-3, J. Am. Chem. Soc. 125(44) (2003) 13442-13450. [17] S. Kille, F.E. Zilly, J.P. Acevedo, M.T. Reetz, Regio-and stereoselectivity of P450-catalysed hydroxylation of steroids controlled by laboratory evolution, Nat. Chem. 3(9) (2011) 738-743. [18] K. Hayashi, K. Yasuda, H. Sugimoto, S. Ikushiro, M. Kamakura, A. Kittaka, R.L. Horst, T.C. Chen, M. Ohta, Y. Shiro, T. Sakaki, Three-step hydroxylation of vitamin D-3 by a genetically engineered CYP105A1, FEBS J. 277(19) (2010) 3999-4009. [19] K. Neufeld, B. Henssen, J. Pietruszka, Enantioselective Allylic Hydroxylation of omega-Alkenoic Acids and Esters by P450 BM3 Monooxygenase, Angew. Chem. Int. Ed. 53(48) (2014) 13253-13257. [20] A.M. Klibanov, Z. Berman, B.N. Alberti, Preparative hydroxylation of aromatic-compounds catalyzed by peroxidase, J. Am. Chem. Soc. 103(20) (1981) 6263-6264. [21] A. Zaks, D.R. Dodds, Chloroperoxidase-catalyzed asymmetric oxidations substratespecificity and mechanistic study, J. Am. Chem. Soc. 117(42) (1995) 10419-10424. [22] R.J.K. Zhang, K. Chen, X.Y. Huang, L. Wohlschlager, H. Renata, F.H. Arnold, Enzymatic assembly of carbon-carbon bonds via iron-catalysed sp3 C-H functionalization, Nature 565(7737) (2019) 67-72. [23] P. Dydio, H.M. Key, A. Nazarenko, J.Y.E. Rha, V. Seyedkazemi, D.S. Clark, J.F. Hartwig, An artificial metalloenzyme with the kinetics of native enzymes, Science 354(6308) (2016) 102-106. [24] L.S. Mazzaferro, W. Hüttel, A. Fries, M. Müller, Cytochrome P450-catalyzed regioand stereoselective phenol coupling of fungal natural products, J. Am. Chem. Soc. 137(38) (2015) 12289-12295. [25] A. Gesell, M. Rolf, J. Ziegler, M.L.D. Chávez, F.C. Huang, T.M. Kutchan, CYP719B1 is Salutaridine synthase, the C-C phenol-coupling enzyme of morphine biosynthesis in opium poppy, J. Biol. Chem. 284(36) (2009) 24432-24442. [26] M. Sridhar, S.K. Vadivel, U.T. Bhalerao, Novel horseradish peroxidase catalysed enantioselective oxidation of 2-naphthols to 1,1'-binaphthyl-2,2'-diols, Tetrahedron Lett. 38(32) (1997) 5695-5696. [27] T. Kiso, M. Shizuma, H. Murakami, T. Kiryu, K. Hozono, T. Terai, H. Nakano, Oxidative coupling reaction of arbutin and gentisate catalyzed by horseradish peroxidase, J. Mol. Catal. B Enzym. 45(1-2) (2007) 50-56. [28] J.A. McIntosh, P.S. Coelho, C.C. Farwell, Z.J. Wang, J.C. Lewis, T.R. Brown, F.H. Arnold, Enantioselective Intramolecular C-H Amination Catalyzed by Engineered Cytochrome P450 Enzymes In Vitro and In Vivo, Angew. Chem. Int. Ed. 52(35) (2013) 9309-9312. [29] M.C.R. Franssen, H.C. van der Plas, The chlorination of barbituric-acid and some of its derivatives by chloroperoxidase, Bioorg. Chem. 15(1) (1987) 59-70. [30] X. Ke, G.J. Ding, J. Sun, L. Wang, Y.G. Zheng, Vitamin D 3 Hydroxylase and Its Electronic Transfer Chain in vitro Construction and Activity Analysis, China Biotechnol. 36(5) (2016) 89-96. [31] X.W. Zhang, S.Y. Li, Expansion of chemical space for natural products by uncommon P450 reactions, Nat. Prod. Rep. 34(9) (2017) 1061-1089. [32] R.H. Crabtree, Aspects of methane chemistry, Chem. Rev. 95(4) (1995) 987-1007. [33] B.G. Fox, W.A. Froland, D.R. Jollie, J.D. Lipscomb, Methane monooxygenase from methylosinus-trichosporium ob3b, Methods Enzymol. 188(1990) 191-202. [34] F. Xu, S.G. Bell, J. Lednik, A. Insley, Z.H. Rao, L.L. Wong, The heme monooxygenase cytochrome P450(cam) can be engineered to oxidize ethane to ethanol, Angew. Chem. Int. Ed. 44(26) (2005) 4029-4032. [35] M.M. Chen, P.S. Coelho, F.H. Arnold, Utilizing terminal oxidants to achieve P450-catalyzed oxidation of methane, Adv. Synth. Catal. 354(6) (2012) 964-968. [36] S. Mordhorst, J. Siegrist, M. Müller, M. Richter, J.N. Andexer, Catalytic Alkylation Using a Cyclic S-Adenosylmethionine Regeneration System, Angew. Chem. Int. Ed. 56(14) (2017) 4037-4041. [37] H. Stecher, M. Tengg, B.J. Ueberbacher, P. Remler, H. Schwab, H. Griengl, M.G. Khadjawi, Biocatalytic Friedel-Crafts Alkylation Using Non-natural Cofactors, Angew. Chem. Int. Ed. 48(50) (2009) 9546-9548. [38] C. Sommer-Kamann, A. Fries, S. Mordhorst, J.N. Andexer, M. Müller, Asymmetric Calkylation by the S-Adenosylmethionine-dependent Methyltransferase SgvM, Angew. Chem. 129(14) (2017) 4091-4094. [39] O.F. Brandenberg, K. Chen, F.H. Arnold, Directed evolution of a cytochrome P450 carbene transferase for selective functionalization of cyclic compounds, J. Am. Chem. Soc. 141(22) (2019) 8989-8995. [40] A.R. Krawczyk, E. Lipkowska, J.T. Wrobel, Horseradish peroxidase-mediated preparation of dimers from eugenol and isoeugenol, Collect. Czechoslov. Chem. Commun. 56(5) (1991) 1147-1150. [41] F. Lee, J.E. Chung, K.M. Xu, M. Kurisawa, Injectable degradation-resistant hyaluronic acid hydrogels cross-linked via the oxidative coupling of green tea catechin, ACS Macro Lett. 4(9) (2015) 957-960. [42] T.K. Hyster, C.C. Farwell, A.R. Buller, J.A. McIntosh, F.H. Arnold, Enzyme-controlled nitrogen-atom transfer enables regiodivergent C-H amination, J. Am. Chem. Soc. 136(44) (2014) 15505-15508. [43] P. Dydio, H.M. Key, H. Hayashi, D.S. Clark, J.F. Hartwig, Chemoselective, enzymatic C-H bond amination catalyzed by a cytochrome P450 containing an Ir(Me)-PIX cofactor, J. Am. Chem. Soc. 139(5) (2017) 1750-1753. [44] A. But, A. van Noord, F. Poletto, J.P.M. Sanders, M.C.R. Franssen, E.L. Scott, Enzymatic halogenation and oxidation using an alcohol oxidase-vanadium chloroperoxidase cascade, Mol. Catal. 443(2017) 92-100. [45] N. Itoh, Y. Izumi, H. Yamada, Haloperoxidase-catalyzed halogenation of nitrogencontaining aromatic heterocycles represented by nucleic bases, Biochemistry 26(1) (1987) 282-289. [46] J.H. Medina, H. Viola, C. Wolfman, M. Marder, C. Wasowski, D. Calvo, A.C. Paladini, Overview-flavonoids:a new family of benzodiazepine receptor ligands, Neurochem. Res. 22(4) (1997) 419-425. [47] P. Yaipakdee, L.W. Robertson, Enzymatic halogenation of flavanones and flavones, Phytochemistry 57(3) (2001) 341-347. [48] L. Getrey, T. Krieg, F. Hollmann, J. Schrader, D. Holtmann, Enzymatic halogenation of the phenolic monoterpenes thymol and carvacrol with chloroperoxidase, Green Chem. 16(3) (2014) 1104-1108. [49] C. de Carvalho, Enzymatic and whole cell catalysis:finding new strategies for old processes, Biotechnol. Adv. 29(1) (2011) 75-83. [50] L.K. Hanson, S.G. Sligar, I.C. Gunsalus, Electronic-structure of cytochrome-P450, Croat. Chem. Acta 49(2) (1977) 237-250. [51] W. Zhang, Y. Liu, J.Y. Yan, S.N. Cao, F.L. Bai, Y. Yang, S.H. Huang, L.S. Yao, Y. Anzai, F. Kato, L.M. Podust, D.H. Sherman, S.Y. Li, New reactions and products resulting from alternative interactions between the P450 enzyme and redox partners, J. Am. Chem. Soc. 136(9) (2014) 3640-3646. [52] G.K.Khor,M.H.Uzir,Saccharomycescerevisiae:apotentialstereospecificreductiontool for biotransformation of mono-and sesquiterpenoids, Yeast 28(2) (2011) 93-107. [53] Z.Y. Zhang, F. Li, Y.X. Cao, Y. Tian, J.S. Li, Y.C. Zong, H. Song, Electricity-driven 7 alpha-hydroxylation of a steroid catalyzed by a cytochrome P450 monooxygenase in engineered yeast, Catal. Sci. Technol. 9(18) (2019) 4877-4887. [54] C.M. Hull, A.G.S. Warrilow, N.J. Rolley, C.L. Price, I.S. Donnison, D.E. Kelly, S.L. Kelly, Co-production of 11 alpha-hydroxyprogesterone and ethanol using recombinant yeast expressing fungal steroid hydroxylases, Biotechnol. Biofuels 10(2017) 13. [55] W.Adam,M.Lazarus,C.R.Saha-Möller,O.Weichold,U.Hoch,D.Häring,P.Schreier,Biotransformations with peroxidases, Adv. Biochem. Eng. Biotechnol. 63(1999) 73-108. [56] Y. Yang, I. Cho, X.T. Qi, P. Liu, F.H. Arnold, An enzymatic platform for the asymmetric amination of primary, secondary and tertiary C(sp3)-H bonds, Nat. Chem. 11(11) (2019) 987-993. [57] P.C. Wang, X.W. Yang, B.X. Lin, J.Z. Huang, Y. Tao, Cofactor self-sufficient whole-cell biocatalysts for the production of 2-phenylethanol, Metab. Eng. 44(2017) 143-149. [58] J.H. Park, S.H. Lee, G.S. Cha, D.S. Choi, D.H. Nam, J.H. Lee, J.K. Lee, C.H. Yun, K.J. Jeong, C.B. Park, Cofactor-free light-driven whole-cell cytochrome P450 catalysis, Angew. Chem. Int. Ed. 54(3) (2015) 969-973. [59] N.H. Tran, D. Nguyen, S. Dwaraknath, S. Mahadevan, G. Chavez, A. Nguyen, T. Dao, S. Mullen, T.A. Nguyen, L.E. Cheruzel, An efficient light-driven P450 BM3 biocatalyst, J. Am. Chem. Soc. 135(39) (2013) 14484-14487. [60] S. Bleif, F. Hannemann, J. Zapp, D. Hartmann, J. Jauch, R. Bernhardt, A new Bacillus megaterium whole-cell catalyst for the hydroxylation of the pentacyclic triterpene 11-keto-β-boswellic acid (KBA) based on a recombinant cytochrome P450 system, Appl. Microbiol. Biotechnol. 93(3) (2012) 1135-1146. [61] Z.Z. Chang, X.Q. Wang, R.S. Wei, Z.Y. Liu, H. Shan, G.Z. Fan, H.L. Hu, Functional expression and purification of CYP93C20, a plant membrane-associated cytochrome P450 from Medicago truncatula, Protein Expr, Purif. 150(2018) 44-52. [62] D.R. McDougle, A. Palaria, E. Magnetta, D.D. Meling, A. Das, Functional studies of Nterminally modified CYP2J2 epoxygenase in model lipid bilayers, Protein Sci. 22(7) (2013) 964-979. [63] A.C. Looman, J. Bodlaender, L.J. Comstock, D. Eaton, P. Jhurani, H.A. de Boer, P.H. van Knippenberg, Influence of the codon following the AUG initiation codon on the expression of a modified lacZ gene in Escherichia coli, EMBO J. 6(8) (1987) 2489-2492. [64] N. Ma, Z.F. Chen, J. Chen, J.F. Chen, C. Wang, H.F. Zhou, L.S. Yao, O. Shoji, Y. Watanabe, Z.Q. Cong, Dual-Functional Small Molecules for Generating an Efficient Cytochrome P450BM3 Peroxygenase, Angew. Chem. Int. Ed. 57(26) (2018) 7628-7633. [65] M. Hofrichter, R. Ullrich, Heme-thiolate haloperoxidases:versatile biocatalysts with biotechnological and environmental significance, Appl. Microbiol. Biotechnol. 71(3) (2006) 276-288. [66] P.D. Shaw, L.P. Hager, Biological chlorination 3 beta-ketoadipate chlorinase soluble enzyme system, J. Biol. Chem. 234(10) (1959) 2565-2569. [67] D.R. Morris, L.P. Hager, Chloroperoxidase I isolation and properties of crystalline glycoprotein, J. Biol. Chem. 241(8) (1966) 1763-1768. [68] M. Sundaramoorthy, Chloroperoxidase, John Wiley & Sons, Encyclopedia of Inorganic and Bioinorganic Chemistry, 2012. [69] P.F. Hollenberg, L.P. Hager, P-450 Nature of carbon-monoxide complex of ferrous chloroperoxidase, J. Biol. Chem. 248(7) (1973) 2630-2633. [70] Y. Liu, Y.L. Wang, Y.C. Jiang, M.C. Hu, S.N. Li, Q.G. Zhai, Biocatalytic synthesis of C3 chiral building blocks by chloroperoxidase-catalyzed enantioselective halo-hydroxylation and epoxidation in the presence of ionic liquids, Biotechnol. Prog. 31(3) (2015) 724-729. [71] M. Buchhaupt, K. Ehrich, S. Hüttmann, J. Guder, J. Schrader, Over-expression of chloroperoxidase in Caldariomyces fumago, Biotechnol. Lett. 33(11) (2011) 2225-2231. [72] B.A. Kaup, K. Ehrich, M. Pescheck, J. Schrader, Microparticle-enhanced cultivation of filamentous microorganisms:increased chloroperoxidase formation by Caldariomyces fumago as an example, Biotechnol. Bioeng. 99(3) (2008) 491-498. [73] X.W. Yi, M. Mroczko, K.M. Manoj, X.T. Wang, L.P. Hager, Replacement of the proximal heme thiolate ligand in chloroperoxidase with a histidine residue, Proc. Natl. Acad. Sci. 96(22) (1999) 12412-12417. [74] F. van de Velde, M. Bakker, F. van Rantwijk, G.P. Rai, L.P. Hager, R.A. Sheldon, Engineering chloroperoxidase for activity and stability, J. Mol. Catal. B Enzym. 11(4) (2001) 765-769. [75] G.P. Rai, S. Sakai, A.M. Flórez, L. Mogollon, L.P. Hager, Directed evolution of chloroperoxidase for improved epoxidation and chlorination catalysis, Adv. Synth. Catal. 343(6-7) (2001) 638-645. [76] R.J. Jiao, Y. Tan, Y.C. Jiang, M.C. Hu, S.N. Li, Q.G. Zhai, Ordered mesoporous silica matrix for immobilization of chloroperoxidase with enhanced biocatalytic performance for oxidative decolorization of azo dye, Ind. Eng. Chem. Res. 53(31) (2014) 12201-12208. [77] J.Z. Liu, M. Wang, Improvement of activity and stability of chloroperoxidase by chemical modification, BMC Biotechnol. 7(1) (2007) 23. [78] Y. Liu, Y.M. Zhang, X.J. Li, Q.P. Yuan, H. Liang, Self-repairing metal-organic hybrid complexes for reinforcing immobilized chloroperoxidase reusability, Chem. Commun. 53(22) (2017) 3216-3219. [79] J. He, Y.M. Zhang, Q.P. Yuan, H. Liang, Catalytic activity and application of immobilized chloroperoxidase by biometric magnetic nanoparticles, Ind. Eng. Chem. Res. 58(8) (2019) 3555-3560. [80] M. Hofrichter, R. Ullrich, M.J. Pecyna, C. Liers, T. Lundell, New and classic families of secreted fungal heme peroxidases, Appl. Microbiol. Biotechnol. 87(3) (2010) 871-897. [81] M. Hofrichter, H. Kellner, R. Herzog, A. Karich, C. Liers, K. Scheibner, V.W. Kimani, R. Ullrich, Fungal Peroxygenases:A Phylogenetically Old Superfamily of Heme Enzymes with Promiscuity for Oxygen Transfer Reactions, Grand challenges in fungal biotechnology, Springer, Cham, 2020369-403. [82] R. Ullrich, M. Hofrichter, The haloperoxidase of the agaric fungus Agrocybe aegerita hydroxylates toluene and naphthalene, FEBS Lett. 579(27) (2005) 6247-6250. [83] E. Aranda, M. Kinne, M. Kluge, R. Ullrich, M. Hofrichter, Conversion of dibenzothiophene by the mushrooms Agrocybe aegerita and Coprinellus radians and their extracellular peroxygenases, Appl. Microbiol. Biotechnol. 82(6) (2009) 1057-1066. [84] M. Kluge, R. Ullrich, K. Scheibner, M. Hofrichter, Stereoselective benzylic hydroxylation of alkylbenzenes and epoxidation of styrene derivatives catalyzed by the peroxygenase of Agrocybe aegerita, Green Chem. 14(2) (2012) 440-446. [85] S. Peter, M. Kinne, R. Ullrich, G. Kayser, M. Hofrichter, Epoxidation of linear, branched and cyclic alkenes catalyzed by unspecific peroxygenase, Enzym. Microb. Technol. 52(6-7) (2013) 370-376. [86] S. Peter, M. Kinne, X.S. Wang, R. Ullrich, G. Kayser, J.T. Groves, M. Hofrichter, Selective hydroxylation of alkanes by an extracellular fungal peroxygenase, FEBS J. 278(19) (2011) 3667-3675. [87] M. Kinne, M. Poraj-Kobielska, S.A. Ralph, R. Ullrich, M. Hofrichter, K.E. Hammel, Oxidative cleavage of diverse ethers by an extracellular fungal peroxygenase, J. Biol. Chem. 284(43) (2009) 29343-29349. [88] B.O. Burek, S. Bormann, F. Hollmann, J.Z. Bloh, D. Holtmann, Hydrogen peroxide driven biocatalysis, Green Chem. 21(12) (2019) 3232-3249. [89] P. Molina-Espeja, S. Ma, D.M. Mate, R. Ludwig, M. Alcalde, Tandem-yeast expression system for engineering and producing unspecific peroxygenase, Enzym. Microb. Technol. 73-74(2015) 29-33. [90] S. Bormann, A.G. Baraibar, Y. Ni, D. Holtmann, F. Hollmann, Specific oxyfunctionalisations catalysed by peroxygenases:opportunities, challenges and solutions, Catal. Sci. Technol. 5(4) (2015) 2038-2052. [91] M. Hofrichter, R. Ullrich, Oxidations catalyzed by fungal peroxygenases, Curr. Opin. Chem. Biol. 19(2014) 116-125. [92] Y.H. Wang, D.M. Lan, R. Durrani, F. Hollmann, Peroxygenases en route to becoming dream catalysts. What are the opportunities and challenges? Curr. Opin. Chem. Biol. 37(2017) 1-9. [93] A. Gutiérrez, E.D. Babot, R. Ullrich, M. Hofrichter, A.T. Martínez, J.C. del Río, Regioselective oxygenation of fatty acids, fatty alcohols and other aliphatic compounds by a basidiomycete heme-thiolate peroxidase, Arch. Biochem. Biophys. 514(1-2) (2011) 33-43. [94] P. Molina-Espeja, M. Canellas, F.J. Plou, M. Hofrichter, F. Lucas, V. Guallar, M. Alcalde, Synthesis of 1-naphthol by a natural peroxygenase engineered by directed evolution, ChemBioChem 17(4) (2016) 341-349. [95] F. Lucas, E.D. Babot, M. Canellas, J.C. del Río, L. Kalum, R. Ullrich, M. Hofrichter, V. Guallar, A.T. Martínez, A. Gutiérrez, Molecular determinants for selective C-25-hydroxylation of vitamins D-2 and D-3 by fungal peroxygenases, Catal. Sci. Technol. 6(1) (2016) 288-295. [96] U.T. Bornscheuer, G.W. Huisman, R.J. Kazlauskas, S. Lutz, J.C. Moore, K. Robins, Engineering the third wave of biocatalysis, Nature 485(7397) (2012) 185-194. [97] B. Valderrama, M. Ayala, R. Vazquez-Duhalt, Suicide inactivation of peroxidases and the challenge of engineering more robust enzymes, Chem. Biol. 9(5) (2002) 555-565. [98] W.Q. Cheng, X.Y. Zheng, M. Yang, Hydrogen peroxide induced protein oxidation during storage and lyophilization process, J. Pharm. Sci. 105(6) (2016) 1837-1842. [99] S.L. Neidleman, W.F. Amon Jr., J. Geigert, Preparation of epoxides and glycols from gaseous alkenes, U.S. Pat. (1981), 4284723(1981). [100] F. Tieves, S.J.P. Willot, M.M.C.H. van Schie, M.C.R. Rauch, S.H.H. Younes, W.Y. Zhang, J.J. Dong, P.G. de Santos, J.M. Robbins, B. Bommarius, M. Alcalde, A.S. Bommarius, F. Hollmann, Formate Oxidase (FOx) from Aspergillus oryzae:One Catalyst Enables Diverse H2O2-Dependent Biocatalytic Oxidation Reactions, Angew. Chem. Int. Ed. 58(23) (2019) 7873-7877. [101] Z.Y. Wang, J.Q. Wang, G. Chen, W.N. Xu, Z.W. Fu, G.Q. Jiang, J.Z. Wu, Z. Liu, Polyelectrolytes tailored enzyme cascades with enhanced stability and activity for one-pot synthesis, ChemCatChem 10(23) (2018) 5391-5396. [102] Z.Y. Wang, W.N. Xu, Z.W. Fu, G.Q. Jiang, J.Z. Wu, Z. Liu, Pluronic-conjugated enzyme cascade for insitu oxidation in biphasic media, ChemCatChem 10(9) (2018) 2003-2008. [103] M. Comotti, C.D. Pina, R. Matarrese, M. Rossi, The catalytic activity of "Naked" gold particles, Angew. Chem. Int. Ed. 43(43) (2004) 5812-5815. [104] C.E. Paul, E. Churakova, E. Maurits, M. Girhard, V.B. Urlacher, F. Hollmann, In situ formation of H2O2 for P450 peroxygenases, Bioorg. Med. Chem. 22(20) (2014) 5692-5696. [105] S.K. Karmee, C. Roosen, C. Kohlmann, S. Lütz, L. Greiner, W. Leitner, Chemo-enzymatic cascade oxidation in supercritical carbon dioxide/water biphasic media, Green Chem. 11(7) (2009) 1052-1055. [106] S.J. Freakley, S. Kochius, J. van Marwijk, C. Fenner, R.J. Lewis, K. Baldenius, S.S. Marais, D.J. Opperman, S.T.L. Harrison, M. Alcalde, M.S. Smit, G.J. Hutchings, A chemo-enzymatic oxidation cascade to activate C-H bonds with in situ generated H2O2, Nat. Commun. 10(2019) 4178. [107] S. Lutz, E. Steckhan, A. Liese, First asymmetric electroenzymatic oxidation catalyzed by a peroxidase, Electrochem. Commun. 6(6) (2004) 583-587. [108] C. Kohlmann, S. Lutz, Electroenzymatic synthesis of chiral sulfoxides, Eng. Life Sci. 6(2) (2006) 170-174. [109] C.E. La Rotta, E. D'Elia, E.P.S. Bon, Chloroperoxidase mediated oxidation of chlorinated phenols using electrogenerated hydrogen peroxide, Electron. J. Biotechnol. 10(1) (2007) 24-36. [110] S. Bormann, M.M.C.H. van Schie, T.P. De Almeida, W.Y. Zhang, M. Stöckl, R. Ulber, F. Hollmann, D. Holtmann, H2O2 production at low overpotentials for electroenzymatic halogenation reactions, ChemSusChem 12(21) (2019) 4759-4763. [111] D.S. Choi, Y. Ni, E. Fernandez-Fueyo, M. Lee, F. Hollmann, C.B. Park, Photoelectroenzymatic oxyfunctionalization on flavin-hybridized carbon nanotube electrode platform, ACS Catal. 7(3) (2017) 1563-1567. [112] A. Yayci, A.G. Baraibar, M. Krewing, E. Fernandez-Fueyo, F. Hollmann, M. Alcalde, R. Kourist, J.E. Bandow, Plasma-driven in situ production of hydrogen peroxide for biocatalysis, ChemSusChem 13(8) (2020) 2072-2079. [113] Churakova E., Kluge M., Ullrich R., Arends I., Hofrichter M., Hollmann F., Specific Photobiocatalytic Oxyfunctionalization Reactions, Angew. Chem., Int. Ed. 50(45) (2011) 10716-10719. [114] B.O. Burek, D.W. Bahnemann, J.Z. Bloh, Modeling and optimization of the photocatalytic reduction of molecular oxygen to hydrogen peroxide over titanium dioxide, ACS Catal. 9(1) (2019) 25-37. [115] S.J.P. Willot, E. Fernandez-Fueyo, F. Tieves, M. Pesic, M. Alcaldel, I.W.C.E. Arends, C. B. Park, F. Hollmann, Expanding the spectrum of light-driven peroxygenase reactions, ACS Catal. 9(2) (2019) 890-894. [116] W.Y. Zhang, E. Fernandez-Fueyo, Y. Ni, M. van Schie, J. Gacs, R. Renirie, R. Wever, F. G. Mutti, D. Rother, M. Alcalde, F. Hollmann, Selective aerobic oxidation reactions using a combination of photocatalytic water oxidation and enzymatic oxyfunctionalizations, Nat. Catal. 1(1) (2018) 55-62. [117] D.D. Zeng, W.J. Luo, J. Li, H.J. Liu, H.W. Ma, Q. Huang, C.H. Fan, Gold nanoparticlesbased nanoconjugates for enhanced enzyme cascade and glucose sensing, Analyst 137(19) (2012) 4435-4439. [118] W. Tang, W.P. Fan, W.Z. Zhang, Z. Yang, L. Li, Z.T. Wang, Y.L. Chiang, Y.J. Liu, L.M. Deng, L.C. He, Z.Y. Shen, O. Jacobson, M.A. Aronova, A. Jin, J. Xie, X.Y. Chen, Wet/Sono-Chemical Synthesis of Enzymatic Two-Dimensional MnO2 Nanosheets for Synergistic Catalysis-Enhanced Phototheranostics, Adv. Mater. 31(19) (2019) 1900401. [119] S.J. Freakley, S. Kochius, J. van Marwijk, C. Fenner, R.J. Lewis, K. Baldenius, S.S. Marais, D.J. Opperman, S.T.L. Harrison, M. Alcalde, M.S. Smit, G.J. Hutchings, A chemo-enzymatic oxidation cascade to activate C-H bonds with in situ generated H2O2, Nat. Commun. 10(1) (2019) 4178. [120] X.Y. Li, Y.F. Cao, K. Luo, Y.Z. Sun, J.R. Xiong, L.C. Wang, Z. Liu, J. Li, J.Y. Ma, J. Ge, H. Xiao, R.N. Zare, Highly active enzyme-metal nanohybrids synthesized in proteinpolymer conjugates, Nat. Catal. 2(8) (2019) 718-725. [121] M. Vázquez-González, C. Wang, I.J.N.C. Willner, Biocatalytic cascades operating on macromolecular scaffolds and in confined environments, Nat. Catal. 3(3) (2020) 256-273. |
[1] | Xiaobo Ruan, Sheng Zhang, Wei Song, Jia Liu, Xiulai Chen, Liming Liu, Jing Wu. Efficient synthesis of tyrosol from L-tyrosine via heterologous Ehrlich pathway in Escherichia coli [J]. Chinese Journal of Chemical Engineering, 2022, 47(7): 18-30. |
[2] | Chunyu Zhang, Yan Sun, Xiaoyan Dong. Conjugation of a zwitterionic polymer with dimethyl chains to lipase significantly increases the enzyme activity and stability [J]. Chinese Journal of Chemical Engineering, 2022, 47(7): 48-53. |
[3] | Ziheng Cui, Shiding Zhang, Shengyu Zhang, Biqiang Chen, Yushan Zhu, Tianwei Tan. Green biomanufacturing promoted by automatic retrobiosynthesis planning and computational enzyme design [J]. Chinese Journal of Chemical Engineering, 2022, 41(1): 6-21. |
[4] | Siyuan Gao, Yuanke Guo, Chen Ma, Ding Ma, Kequan Chen, Pingkai Ouyang, Xin Wang. Characterization and application of a recombinant dopa decarboxylase from Harmonia axyridis for the efficient biosynthesis of dopamine [J]. Chinese Journal of Chemical Engineering, 2022, 41(1): 449-456. |
[5] | Saboura Ashkevarian, Jalil Badraghi, Fatemeh Mamashli, Behdad Delavari, Ali Akbar Saboury. Covalent immobilization and characterization of Rhizopus oryzae lipase on core-shell cobalt ferrite nanoparticles for biodiesel production [J]. Chinese Journal of Chemical Engineering, 2021, 37(9): 128-136. |
[6] | Xueping Liu, Ping Xue, Feng Jia, Dongya Qiu, Keren Shi, Weiwei Zhang. Tailoring polymeric composite gel beads-encapsulated microorganism for efficient degradation of phenolic compounds [J]. Chinese Journal of Chemical Engineering, 2021, 32(4): 301-306. |
[7] | Wenqiang Li, Wentao Sun, Chun Li. Engineered microorganisms and enzymes for efficiently synthesizing plant natural products [J]. Chinese Journal of Chemical Engineering, 2021, 29(2): 62-73. |
[8] | Bekir Engin Eser, Yan Zhang, Li Zong, Zheng Guo. Self-sufficient Cytochrome P450s and their potential applications in biotechnology [J]. Chinese Journal of Chemical Engineering, 2021, 29(2): 121-135. |
[9] | Han Zhang, Yunpeng Bai, Ning Zhu, Jianhe Xu. Microfluidic reactor with immobilized enzyme-from construction to applications: A review [J]. Chinese Journal of Chemical Engineering, 2021, 29(2): 136-145. |
[10] | Mengjiao Xu, Zhuotao Tan, Chenjie Zhu, Wei Zhuang, Hanjie Ying, Pingkai Ouyang. Recent advance of chemoenzymatic catalysis for the synthesis of chemicals: Scope and challenge [J]. Chinese Journal of Chemical Engineering, 2021, 29(2): 146-167. |
[11] | Xiaoyan Zhuang, Qian Wu, Aihui Zhang, Langxing Liao, Baishan Fang. Single-molecule biotechnology for protein researches [J]. Chinese Journal of Chemical Engineering, 2021, 29(2): 212-224. |
[12] | Dong Wan, Sunfan Li, Jianxin Zhang, Guilei Ma, Jie Pan. Intelligent self-assembly prodrug micelles loading doxorubicin in response to tumor microenvironment for targeted tumors therapy [J]. Chinese Journal of Chemical Engineering, 2021, 39(11): 219-227. |
[13] | Junyang Xu, Yanjun Jiang, Liya Zhou, Li Ma, Zhihong Huang, Jiafu Shi, Jing Gao, Ying He. Nickel-Carnosine complex: A new carrier for enzymes immobilization by affinity adsorption [J]. Chinese Journal of Chemical Engineering, 2021, 38(10): 237-246. |
[14] | Hui Huang, Lulu Lei, Juan Bai, Ling Zhang, Donghui Song, Jingqi Zhao, Jiali Li, Yongxin Li. Efficient elimination and detection of phenolic compounds in juice using laccase mimicking nanozymes [J]. Chinese Journal of Chemical Engineering, 2021, 29(1): 167-175. |
[15] | Jing Wang, Yongqin Lv. An enzyme-loaded reactor using metal-organic framework-templated polydopamine microcapsule [J]. Chinese Journal of Chemical Engineering, 2021, 29(1): 317-325. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||