[1] International Olive Council. Olivae 124 English Edition, International Olive Council, Madrid, 2017. [2] A.S. Stasinakis, I. Elia, A.V. Petalas, C.P. Halvadakis, Removal of total phenols from olive-mill wastewater using an agricultural byproduct, olive pomace, J. Hazard. Mater. 160 (2008) 408-413 [3] A. De Martino, M. Arienzo, M. Iorioa, F. Vinal, M. Lorito, P.D. Prenzler, D. Ryan, H.K. Obiede, Detoxification of olive mill wastewaters by zinc–aluminium layered double hydroxides. Applied Clay Science 53 (2011) 737-744 [4] Abu-Lafi S., Al-Natsheh M.S., Yoghmoor R., Al-Rimawi F., Enrichment of phenolic compounds from olive mill wastewater and in vitro evaluation of their antimicrobial activities, Evid-Based Complementary and Alternat. Med. (2017 (2017) 3706915 [5] J.M. Ochando-Pulido, S. Pimentel-Moral, V. Verardo, A. Martinez-Ferez, A focus on advanced physico-chemical processes for olive mill wastewater treatment, Separation and Purification Technology 179 (2017) 161–174 [6] P. Sharma, U. Melkania, Effect of phenolic compounds on hydrogen production from municipal solid waste, Waste Management 78 (2018) 115-123 [7] A. Al Bsoul, M., Hailat, A. Abdelhay, M. Tawalbeh, Inshad Jum'h, Khalid Bani-Melhem. Treatment of olive mill effluent by adsorption on titanium oxide nanoparticles, Science of The Total Environment 688 (2019) 1327-1334 [8] Z.S. Lee, S. Y. Chin, J. W. Lim, T. Witoon, C. KuiCheng, Treatment technologies of palm oil mill effluent (POME) and olive mill wastewater (OMW): A brief review, Environmental Technology & Innovation 15 (2019) 100377 [9] A. Ena, C. Pintucci, P. Carlozzi, The recovery of polyphenols from olive mill waste using two adsorbing vegetable matrices, J. Biotechnol. 157(2012) 573–577 [10] P.D. Zagklis, I.A. Vavouraki, M.E. Kornaros, C.A. Paraskeva, Purification of olive mill wastewater phenols through membrane filtration and resin adsorption/desorption, J Hazard Mater. 285 (2015) 69–76 [11] N. Kraiem, M. Jeguirim, L. Limousy, M. Lajili, S. Dorge, L. Michelin,. Impregnation of olive mill wastewater on dry biomasses: impact on chemical properties and combustion performances, Energy 78(2014) 479-489 [12] J.M.O. Pulido, A review on the use of membrane technology and fouling control for olive mill wastewater treatment, Science of The Total Environment 563–564 (2016) 664-675 [13] I. Sedej, R. Milczarek, S.C. Wang, R. Sheng, R. de Jesús Avena-Bustillos, L. Dao, G. Takeoka, Membrane-filtered olive mill wastewater: quality assessment of the dried phenolic-rich fraction, J. Food Sci. 81 (2016) E889-896 [14] A.A. Azzaz, B. Khiari, S. Jellali, C. Matei Ghimbeu, M. Jeguirim, Hydrochars production, characterization and application for wastewater treatment: a review, Renew. Sust. Energ. Rev. 127(2020) 109882. [15] N. Rahmanian, S.M. Jafari, C.M. Galanakis, Recovery and removal of phenolic compounds from olive mill wastewater, J. Am. Oil Chem. Soc. 91 (2014) 1-18 [16] H. Qiao, Y. Zhou, F. Yu, E. Wang, Y. Min, Q. Huang, L. Pang, T. Ma, Effective removal of cationic dyes using carboxylate-functionalized cellulose nanocrystals, Chemosphere 141 (2015) 297-303 [17] P. Galiatsatou, M. Metaxas, D. Arapogloua, V. Kasselouri-Rigopoulou, Treatment of olive mill wastewater with activated carbons from agricultural by-products, Waste Manag. 22 (2002) 803-812 [18] M.O.J. Azzam, K. Malah, N.I. Abu-Lail, Dynamic post-treatment response of olive mill effluent wastewater using activated carbon. J Environ Sci Heal A. 39 (2004) 269-280 [19] M. Achak, A. Hafidi, N. Ouazzani, S. Sayadi, L. Mandi, Low cost biosorbent “banana peel” for the removal of phenolic compounds from olive mill wastewater: Kinetic and equilibrium studies, J. Hazard. Mater. 166 (2009)17-125 [20] M. Ververi, A.M. Goula, Pomegranate peel and orange juice by-product as new biosorbents of phenolic compounds from olive mill wastewaters, Chemical Engineering & Processing: Process Intensification 138 (2019) 86-96 [21] N. Yahiaoui, Etude de l’adsorption des composés phénoliques des margines d’olive sur carbonate de calcium, Hydroxyapatite et charbon actif, Master, Univ. Mouloud Mammeri Tizi Ouzou., Algérie), 2014 [22] W. Dong, J. Ding, W. Wang, L. Zong, J. Xu, A. Wang, Magnetic nano-hybrids adsorbents formulated from acidic leachates of clay minerals, Journal of Cleaner Production 256(2020)120383 [23] T.C. Chen, J. Sapitan, F. Fe (Jaja), F.C. Ballesteros Jr, M.C. Lu, Using activated clay for adsorption of sulfone compounds in diesel, Journal of Cleaner Production 124 (2016) 378-382 [24] A. M. Awad, S. M.R. Shaikh, R. Jalab, M. H. Gulied, M. S. Nasser, A. Benamor, S. Adham, Adsorption of organic pollutants by natural and modified clays: A comprehensive review, Separation and Purification Technology 228 (2019) 115719 [25] Al-Malah, K., Azzam, M.O.J., Abu-Lail, N. I., 2000. Olive mills effluent (OME) wastewater post-treatment using activated clay. Separation and Purification Technology 20, 225–234 [26] Z. Daheb, M. Yaddadene, Etude de l’adsorption des composes phénoliques des margines d’olive sur une argile locale, Mémoire de master. Universite Mouloud Mammeri Tizi Ouzou, 48p. 2012 [27] M.O.J Azzam, Olive mills wastewater treatment using mixed adsorbents of volcanic tuff, [28] [[28]] I. Chaari, B. Moussi, F. Jamoussi, Interactions of the dye, C.I. direct orange 34 with natural clay, J. Alloy. Compd. 647 (2015) 720–727 [29] [[29]] T. Gutfinger, Polyphenols in olive oils, Journal of the American oil chemists Society 58 (1981) 966-968 [30] [[30]] G. La Scalia, R. Micale, L. Cannizzaro, F. Paolo Marra, A suistainable phenolic compound extraction system from olive oil mill wastewater, Journal of Cleaner Production 142 (2017) 3782-3788 [31] Papaoikonomou L., Labanaris K., Kaderides K., Goula A.M., Adsorption–desorption of phenolic compounds from olive mill wastewater using a novel low-cost biosorbent, Environ. Sci. Pollut. Res. Int. 28 (19) (2021) 24230–24244 [32] [[32]] F.A. Banat, B. Al-bashir, S. Al-Asheh, Hayajneh, Adsorption of phenol by Bentonite Jordan university of Science and Technology, Environmental Pollution 107 (2000) 391-398 [33] M. Djebbar, Argile de Maghnia: purification et adsorption de pollutant, Master Thesis, Univ. Oran, Algeria, 2014. [34] [[34]] A. Gładysz-Płaska, M. Majdan, S. Pikus, D. Sternik, Simultaneous adsorption of chromium(VI) and phenol on natural red clay modified by HDTMA, Chemical Engineering Journal 179 (2012)140-150 [35] Ouallal H., Dehmani Y., Moussout H., Messaoudi L., Azrour M., Kinetic, isotherm and mechanism investigations of the removal of phenols from water by raw and calcined clays, Heliyon 5 (2019) e01616 [36] [[36]] S. Jeddi, A. Ouassini, M. El Ouahhaby, H. Mghafri, Valorization of Natural Mineral Substances (NMS) at Adsorption Techniques: Case of Olive Oil Mill Waste waters, J. Mater. Environ. Sci. 7 (2016) 488-496 [37] [[37]] P. Liao, S. Yuan, W. Xie, W. Zhang, M. Tong, K. Wang, Adsorption of nitrogenheterocyclic compounds on bamboo charcoal: kinetics, thermodynamics, and microwave regeneration, J. Colloid Interface Sci. 390 (2013) 189-195 [38] [[38]] S. Lagergren, Zur theorie der sogenannten 316 adsorption geloester stoffe. Kungliga Svenska Vetenskapsakademiens, Handlingar 4 (1898) 1-39 [39] [[39]] Y.S. Ho, G. McKay, Pseudo-second order model for sorption processes, Process Biochemistry 34 (1999) 451-465 [40] [[40]] A. Pandiarajan, R. Kamaraj, S. Vasudevan, S. Vasudevan, OPAC (orange peel activated carbon) derived from waste orange peelfor the adsorption of chlorophenoxyacetic acid herbicides from water: adsorption isotherm, kinetic modelling and thermodynamic studies, Bioresour. Technol. 261 (2018) 329-341 [41] [[41]] K. Rida, S. Bouraoui, S. Hadnine, Adsorption of methylene blue from aqueous solution by kaolin and zeolite, Appl. Clay Sci. 83 (2013) 99-105 [42] [[42]] Y. Fu, T. Viraraghavan, Removal of Congo Red from an aqueous solution by fungus Aspergillus niger, Adv. Environ. Res. 7 (2002) 239-247 [43] [[43]] C. Namasivayam, D. Kavitha, Removal of Congo Red from water by adsorption onto activated carbon prepared from coir pith, an agricultural solid waste, Dyes Pigm. 54 (2002) 47-58 |