[1] N. Yusof, A.F. Ismail, Post spinning and pyrolysis processes of polyacrylonitrile (PAN)-based carbon fiber and activated carbon fiber:A review, J. Anal. Appl. Pyrolysis 93 (2012) 1-13 [2] J. Hao, H.Q. Wei, C.X. Lu, Y.D. Liu, New aspects on the cyclization mechanisms of Poly(acrylonitrile-co-itaconic acid), Eur. Polym. J. 121 (2019) 109313 [3] D.U. Park, J.H. Ryu, N.K. Han, W.H. Park, Y.G. Jeong, Thermal analysis on the stabilization behavior of ternary copolymers based on acrylonitrile, methyl acrylate and itaconic acid, Fibers Polym. 19 (12) (2018) 2439-2448 [4] Q. Liu, Y.X. Wang, F.X. Niu, L.R. Ma, C. Qu, S.L. Fu, M.L. Chen, Spinnability of polyacrylonitrile gel dope in the mixed solvent of dimethyl sulfoxide/dimethylacetamide and characterization of the nascent fibers, Polym. Sci. Ser. A 60 (5) (2018) 638-646 [5] Y. Eom, B.C. Kim, Solubility parameter-based analysis of polyacrylonitrile solutions in N, N-dimethyl formamide and dimethyl sulfoxide, Polymer 55 (10) (2014) 2570-2577 [6] S.G. Ding, X.Q. Cheng, Z.X. Jiang, Y.P. Bai, L. Shao, Pore morphology control and hydrophilicity of polyacrylonitrile ultrafiltration membranes, J. Appl. Polym. Sci. 132 (20) (2015). 41991. https://doi.org/10.1002/app.41991 [7] A.Q. Ju, S.Y. Guang, H.Y. Xu, Effect of comonomer structure on the stabilization and spinnability of polyacrylonitrile copolymers, Carbon 54 (2013) 323-335 [8] N.U. Nguyen-Thai, S.C. Hong, Structural evolution of Poly(acrylonitrile-co-itaconic acid) during thermal oxidative stabilization for carbon materials, Macromolecules 46 (15) (2013) 5882-5889 [9] S.N.A.M. Jamil, R. Daik, I. Ahmad, Redox synthesis and thermal behaviorof acrylonitrile-methyl acrylate-fumaronitrile terpolymer as precursor for carbon fiber, Int. J. Chem. Eng. Appl. (2012) 416-420 [10] Z. Fu, B. Liu, Y. Liu, B. Li, H. Zhang, Detailed Cyclization Pathways Identification of Polyacrylonitrile and Poly (acrylonitrile-co-itaconic acid) by in Situ FTIR and Two-Dimensional Correlation analysis. Ind. Eng. Chem. Res. 57 (2018) 8348-8359 [11] N.U. Nguyen-Thai, S.C. Hong, Controlled architectures of poly(acrylonitrile-co-itaconic acid) for efficient structural transformation into carbon materials, Carbon 69 (2014) 571-581 [12] Y.S. Gao, D.Z. Zhou, J. Lyu, A. Sigen, Q. Xu, B. Newland, K. Matyjaszewski, H.Y. Tai, W.X. Wang, Complex polymer architectures through free-radical polymerization of multivinyl monomers, Nat. Rev. Chem. 4 (4) (2020) 194-212 [13] K. Parkatzidis, H.S. Wang, N.P. Truong, A. Anastasaki, Recent developments and future challenges in controlled radical polymerization:A 2020 update, Chem 6 (7) (2020) 1575-1588 [14] X.H. Li, E. Mastan, W.J. Wang, B.G. Li, S.P. Zhu, Progress in reactor engineering of controlled radical polymerization:A comprehensive review, React. Chem. Eng. 1 (1) (2016) 23-59 [15] R.B. Grubbs, R.H. Grubbs, 50th anniversary perspective:Living polymerization-emphasizing the molecule in macromolecules, Macromolecules 50 (18) (2017) 6979-6997 [16] S.K. Fierens, P.H.M. van Steenberge, F. Vermeire, M.F. Reyniers, G.B. Marin, D.R. D'Hooge, An evaluation of the impact of SG1 disproportionation and the addition of styrene in NMP of methyl methacrylate, AIChE J. 64 (7) (2018) 2545-2559 [17] J. Liu, T.T. Wang, Z.H. Luo, Y.N. Zhou, In silico mechanically mediated atom transfer radical polymerization:A detailed kinetic study, Aiche J. 67 (5) (2021) e17151 [18] N. De Rybel, P.H.M. van Steenberge, M.F. Reyniers, D.R. D'Hooge, G.B. Marin, How chain length dependencies interfere with the bulk RAFT polymerization rate and microstructural control, Chem. Eng. Sci. 177 (2018) 163-179 [19] W. Wang, Y.N. Zhou, Z.H. Luo, Modeling of the atom transfer radical copolymerization processes of methyl methacrylate and 2-(trimethylsilyl) ethyl methacrylate under batch, semibatch, and continuous feeding:A chemical reactor engineering viewpoint, Ind. Eng. Chem. Res. 53 (30) (2014) 11873-11883 [20] Y.S. Ye, F.J. Schork, Modeling and control of sequence length distribution for controlled radical (RAFT) copolymerization, Ind. Eng. Chem. Res. 48 (24) (2009) 10827-10839 [21] J. Jiang, W.J. Wang, B.G. Li, S.P. Zhu, 110th anniversary:Model-guided preparation of copolymer sequence distributions through programmed semibatch RAFT mini-emulsion styrene/butyl acrylate copolymerization, Ind. Eng. Chem. Res. 58 (41) (2019) 18997-19008 [22] E. Frank, L.M. Steudle, D. Ingildeev, J.M. Spörl, M.R. Buchmeiser, Carbon fibers:Precursor systems, processing, structure, and properties, Angew Chem Int Ed Engl 53 (21) (2014) 5262-5298 [23] J. Wang, M.Y. Zhang, Z.Y. Fu, T.T. Zhou, X.H. Xu, B.J. Liu, Kinetics on the copolymerization of acrylonitrile with itaconic acid or methyl acrylate in dimethylsulfoxide by NMR spectroscopy, Fibers Polym. 16 (12) (2015) 2505-2512 [24] Y.Q. Zhao, C.G. Wang, M.J. Yu, C.S. Cui, Q.F. Wang, B. Zhu, Study on monomer reactivity ratios of acrylonitrile/itaconic acid in aqueous deposited copolymerization system initiated by ammonium persulfate, J. Polym. Res. 16 (4) (2009) 437-442 [25] Y.Q. Zhao, C.G. Wang, Y.X. Wang, B. Zhu, Aqueous deposited copolymerization of acrylonitrile and itaconic acid, J. Appl. Polym. Sci. 111 (6) (2009) 3163-3169 [26] P. Bajaj, D.K. Paliwal, A.K. Gupta, Acrylonitrile-acrylic acids copolymers. I. Synthesis and characterization, J. Appl. Polym. Sci. 49 (5) (1993) 823-833 [27] P. Bajaj, K. Sen, S.H. Bahrami, Solution polymerization of acrylonitrile with vinyl acids in dimethylformamide, J. Appl. Polym. Sci. 59 (10) (1996) 1539-1550 [28] E. Mastan, X.H. Li, S.P. Zhu, Modeling and theoretical development in controlled radical polymerization, Prog. Polym. Sci. 45 (2015) 71-101 [29] L. de Keer, F.L. Figueira, Y.W. Marien, K. de Smit, M. Edeleva, P.H.M. van Steenberge, D.R. D'Hooge, Benchmarking stochastic and deterministic kinetic modeling of bulk and solution radical polymerization processes by including six types of factors two, Macromol. Theory Simul. 29 (6) (2020) 2000065 [30] Y.N. Zhou, Z.H. Luo, State-of-the-art and progress in method of moments for the model-based reversible-deactivation radical polymerization, Macromol. React. Eng. 10 (6) (2016) 516-534 [31] X.P. Cheng, L.F. Feng, X.P. Gu, X. Chen, Z.G. Liu, K.B. McAuley, Modeling of sequence length distribution for olefin copolymerization with vanadium-based catalyst, Aiche J. 66 (1) (2020) e16784 [32] D. Meimaroglou, C. Kiparissides, Review of Monte Carlo methods for the prediction of distributed molecular and morphological polymer properties, Ind. Eng. Chem. Res. 53 (22) (2014) 8963-8979 [33] H.Y. Gao, A. Waechter, I.A. Konstantinov, S.G. Arturo, L.J. Broadbelt, Application and comparison of derivative-free optimization algorithms to control and optimize free radical polymerization simulated using the kinetic Monte Carlo method, Comput. Chem. Eng. 108 (2018) 268-275 [34] D. Demirel Özçam, F. Teymour, Chain-by-chain Monte Carlo simulation:A novel hybrid method for modeling polymerization. part I. linear controlled radical polymerization systems, Macromol. React. Eng. 11 (1) (2017) 1600042 [35] A.D. Trigilio, Y.W. Marien, P.H.M. van Steenberge, D.R. D'hooge, Gillespie-driven kinetic Monte Carlo algorithms to model events for bulk or solution (bio)chemical systems containing elemental and distributed species, Ind. Eng. Chem. Res. 59 (41) (2020) 18357-18386 [36] P.H.M. van Steenberge, D.R. D'hooge, M.F. Reyniers, G.B. Marin, Improved kinetic Monte Carlo simulation of chemical composition-chain length distributions in polymerization processes, Chem. Eng. Sci. 110 (2014) 185-199 [37] S.K. Fierens, S. Telitel, P.H.M. van Steenberge, M.F. Reyniers, G.B. Marin, J.F. Lutz, D.R. D'hooge, Model-based design to push the boundaries of sequence control, Macromolecules 49 (24) (2016) 9336-9344 [38] Y.R. Zhao, B.D. Buren, J.E. Puskas, K.B. McAuley, A simple Monte Carlo method for modeling arborescent polymer production in continuous stirred tank reactor, Macromol. React. Eng. 12 (5) (2018) 1800020 [39] C. Hou, C.F. Sun, L. Ying, C.G. Wang, Monte Carlo simulation of sequence distributions of acrylonitrile copolymers, J. Appl. Polym. Sci. 96 (2) (2005) 483-488 [40] D.T. Gillespie, Exact stochastic simulation of coupled chemical reactions, J. Phys. Chem. 81 (25) (1977) 2340-2361 [41] J. Brandrup, E.H. Immergut, E.A. Grulke, A. Abe, D.R. Bloch, Polymer handbook, Wiley, New York, 1999 [42] G. Moad, A critical assessment of the kinetics and mechanism of initiation of radical polymerization with commercially available dialkyldiazene initiators, Prog. Polym. Sci. 88 (2019) 130-188 [43] F.S. Dainton, P.H. Seaman, D.G.L. James, R.S. Eaton, The polymerization of acrylonitrile in aqueous solution, J. Polym. Sci. 34 (127) (1959) 209-228 [44] A.S. Brar, J. Kaur, 2D NMR studies of acrylonitrile-methyl acrylate copolymers, Eur. Polym. J. 41 (10) (2005) 2278-2289 [45] I. Capek, Chain transfer constants in the emulsion copolymerization of acrylonitrile and butyl acrylate, Collect. Czech. Chem. Commun. 51 (11) (1986) 2546-2552 [46] D.S. Achilias, Investigation of the radical polymerization kinetics using DSC and mechanistic or isoconversional methods, J. Therm. Anal. Calorim. 116 (3) (2014) 1379-1386 [47] J.M. Nölle, C. Jüngst, A. Zumbusch, D. Wöll, Monitoring of viscosity changes during free radical polymerization using fluorescence lifetime measurements, Polym. Chem. 5 (8) (2014) 2700-2703 [48] M.N. Siddiqui, D.S. Achilias, H.H. Redhwi, Effect of the side ethylene glycol and hydroxyl groups on the polymerization kinetics of oligo(ethylene glycol methacrylates). An experimental and modeling investigation, Polym. Chem. 11 (22) (2020) 3732-3746 [49] P.J. Flory, Principles of polymer chemistry, Cornell University Press, 1953 [50] D.R. D'Hooge, M.F. Reyniers, G.B. Marin, The crucial role of diffusional limitations in controlled radical polymerization, Macromol. React. Eng. 7 (8) (2013) 362-379 [51] N.Y. Abu-Thabit, Thermochemistry of acrylamide polymerization:An illustration of auto-acceleration and gel effect, World J. Chem. Educ. 5 (3) (2017) 94-101 [52] Z.Y. Fu, B.J. Liu, Y.J. Deng, J.Y. Ma, C.L. Cao, J. Wang, Y.H. Ao, H.X. Zhang, The suitable itaconic acid content in polyacrylonitrile copolymers used for PAN-based carbon fibers, J. Appl. Polym. Sci. 133 (38) (2016) 43919 |