[1] A. Choudhury, H. Chandra, A. Arora, Application of solid oxide fuel cell technology for power generation-A review, Renew. Sustain. Energy Rev. 20(2013) 430-442. [2] E.T. Boudghene Stambouli, Solid oxide fuel cells (SOFCs) a review of an environmentally clean and efficient source of energy, Renew. Sustain. Energy Rev. 6(2002) 433-455. [3] B. Shri Prakash, R. Pavitra, S. Senthil Kumar, S.T. Aruna, Electrolyte bi-layering strategy to improve the performance of an intermediate temperature solid oxide fuel cell:A review, J. Power Sources 381(2018) 136-155. [4] J. Molenda, K. Świerczek, W. Zając, Functional materials for the IT-SOFC, J. Power Sources 173(2) (2007) 657-670. [5] Z. Wang, W. Yang, S.P. Shafi, L. Bi, Z. Wang, R. Peng, C. Xia, W. Liu, Y. Lu, A high performance cathode for proton conducting solid oxide fuel cells, J. Mater. Chem. A 3(16) (2015) 8405-8412. [6] S. Hossain, A.M. Abdalla, S.N.B. Jamain, J.H. Zaini, A.K. Azad, A review on proton conducting electrolytes for clean energy and intermediate temperature-solid oxide fuel cells, Renew. Sustain. Energy Rev. 79(2017) 750-764. [7] L. Lei, Z. Tao, T. Hong, X. Wang, F. Chen, A highly active hybrid catalyst modified (La0.60Sr0.40)0.95Co0.20Fe0.80O3-δ cathode for proton conducting solid oxide fuel cells, J. Power Sources 389(2018) 1-7. [8] G. Li, H. Jin, Y. Cui, L. Gui, B. He, L. Zhao, Application of a novel (Pr0.9La0.1)2(Ni0.74Cu0.21Nb0.05)O4+δ-infiltrated BaZr0.1Ce0.7Y0.2O3-δ cathode for high performance protonic ceramic fuel cells, J. Power Sources 341(2017) 192- 198. [9] G. Taillades, J. Dailly, M. Taillades-Jacquin, F. Mauvy, A. Essouhmi, M. Marrony, C. Lalanne, S. Fourcade, D.J. Jones, J.C. Grenier, J. Rozière, Intermediate temperature anode-supported fuel cell based on BaCe0.9Y0.1O3 electrolyte with novel Pr2NiO4 cathode, Fuel Cells 10(1) (2010) 166-173. [10] C. Ferchaud, J.C. Grenier, Y. Zhang-Steenwinkel, M.M.A. van Tuel, F.P.F. van Berkel, J.M. Bassat, High performance praseodymium nickelate oxide cathode for low temperature solid oxide fuel cell, J. Power Sources 196(4) (2011) 1872- 1879. [11] Z. Zhu, M. Li, C. Xia, H.J.M. Bouwmeester, Bismuth-doped La1.75Sr0.25NiO4+δ as a novel cathode material for solid oxide fuel cells, J. Mater. Chem. A 5(27) (2017) 14012-14019. [12] Y.P. Wang, K. Zhao, Q. Xu, D.P. Huang, M. Chen, B.H. Kim, Optimization on the electrochemical properties of La2NiO4+δ cathodes by tuning the cathode thickness, Int. J. Hydrogen Energy 43(9) (2018) 4482-4491. [13] S. Saher, J. Song, V. Vibhu, C. Nicollet, A. Flura, J.M. Bassat, H.J.M. Bouwmeester, Influence of annealing at intermediate temperature on oxygen transport kinetics of Pr2NiO4+δ, J. Mater. Chem. A 6(18) (2018) 8331-8339. [14] A. Grimaud, F. Mauvy, J. Marc Bassat, S. Fourcade, M. Marrony, J. Claude Grenier, Hydration and transport properties of the Pr2-xSrxNiO4+δ compounds as H+-SOFC cathodes, J. Mater. Chem. 22(31) (2012) 16017-16025. [15] V.V. Kharton, A.P. Viskup, E.N. Naumovich, F.M.B. Marques, Oxygen ion transport in La2NiO4-based ceramics, J. Mater. Chem. 9(10) (1999) 2623-2629. [16] R.K. Sharma, M. Burriel, L. Dessemond, V. Martin, J.M. Bassat, E. Djurado, An innovative architectural design to enhance the electrochemical performance of La2NiO4+δ cathodes for solid oxide fuel cell applications, J. Power Sources 316(2016) 17-28. [17] K. Zheng, K. Świerczek, Evaluation of La2Ni0.5Cu0.5O4+δ and Pr2Ni0.5Cu0.5O4+δ Ruddlesden-Popper-type layered oxides as cathode materials for solid oxide fuel cells, Mater. Res. Bull. 84(2016) 259-266. [18] M.A. Laguna-Bercero, H. Monzón, A. Larrea, V.M. Orera, Improved stability of reversible solid oxide cells with a nickelate-based oxygen electrode, J. Mater. Chem. A 4(4) (2016) 1446-1453. [19] E. Boehm, J.M. Bassat, P. Dordor, F. Mauvy, J.C. Grenier, P. Stevens, Oxygen diffusion and transport properties in non-stoichiometric Ln2-xNiO4+δ oxides, Solid State Ionics 176(37-38) (2005) 2717-2725. [20] W. Li, B. Guan, L. Ma, S. Hu, N. Zhang, X. Liu, High performing triple-conductive Pr2NiO4+δ anode for proton-conducting steam solid oxide electrolysis cell, J. Mater. Chem. A 6(37) (2018) 18057-18066. [21] Y.P. Wang, Q. Xu, D.P. Huang, K. Zhao, M. Chen, B.H. Kim, Diagnosis on improved electrocatalytic activity of La2Ni0.8Cu0.2O4+δ electrodes towards oxygen reduction reaction, Appl. Surf. Sci. 423(2017) 995-1002. [22] J. Hyodo, K. Tominaga, Y.W. Ju, S. Ida, T. Ishihara, Electrical conductivity and oxygen diffusivity in Cu- and Ga-doped Pr2NiO4, Solid State Ionics 256(2014) 5-10. [23] A. Aguadero, J.A. Alonso, M.J. Escudero, L. Daza, Evaluation of the La2Ni1-xCuxO4+δ system as SOFC cathode material with 8YSZ and LSGM as electrolytes, Solid State Ionics 179(11-12) (2008) 393-400. [24] Y. Wang, J. Cheng, Q. Jiang, J. Yang, J. Gao, Preparation and electrochemical performance of Pr2Ni0.6Cu0.4O4 cathode materials for intermediatetemperature solid oxide fuel cells, J. Power Sources 196(6) (2011) 3104- 3108. [25] Y. Shen, H. Zhao, J. Xu, X. Zhang, K. Zheng, K. Świerczek, Effect of ionic size of dopants on the lattice structure, electrical and electrochemical properties of La2-xMxNiO4+δ (M=Ba, Sr) cathode materials, Int. J. Hydrogen Energy 39(2) (2014) 1023-1029. [26] A. Akbari-Fakhrabadi, E.G. Toledo, J.I. Canales, V. Meruane, S.H. Chan, M.A. Gracia-Pinilla, Effect of Sr2+ and Ba2+ doping on structural stability and mechanical properties of La2NiO4+δ, Ceram. Int. 44(9) (2018) 10551-10557. [27] H. Wang, R. Peng, X. Wu, J. Hu, C. Xia, Sintering behavior and conductivity study of yttrium-doped BaCeO3-BaZrO3 solid solutions using ZnO additives, J. Am. Ceram. Soc. 92(11) (2009) 2623-2629. [28] N.A. Merino, B.P. Barbero, P. Eloy, L.E. Cadús, La1-xCaxCoO3 perovskite-type oxides:Identification of the surface oxygen species by XPS, Appl. Surf. Sci. 253(3) (2006) 1489-1493. [29] R. Strandbakke, V.A. Cherepanov, A.Y. Zuev, D.S. Tsvetkov, C. Argirusis, G. Sourkouni, S. Prünte, T. Norby, Gd- and Pr-based double perovskite cobaltites as oxygen electrodes for proton ceramic fuel cells and electrolyser cells, Solid State Ionics 278(2015) 120-132. [30] J.J. Zhu, D.H. Xiao, J. Li, X.G. Yang, Perovskite-like mixed oxides (LaSrMn1-xNixO4+δ, 0≤ x ≤ 1) as catalyst for catalytic NO decomposition:TPD and TPR studies, Catal. Lett. 129(1-2) (2009) 240-246. [31] Z.B. Zhang, Y.L. Zhu, Y.J. Zhong, W. Zhou, Z.P. Shao, Anion doping:a new strategy for developing high-performance perovskite-type cathode materials of solid oxide fuel cells, Adv. Energy Mater. 7(17) (2017) 1700242. |