[1] C. Delmas, Sodium and Sodium-Ion Batteries:50 Years of Research, Adv. Energy Mater. 8(2018) 1703137. [2] A.M.A. Hashem, A.E. Abdel-Ghany, A.E. Eid, J. Trottier, K. Zaghib, A. Mauger, C. M. Julien, Study of the surface modification of LiNi1/3Co1/3Mn1/3O2 cathode material for lithium ion battery, J. Power Sources 196(2011) 8632-8637. [3] Y. Liang, W.H. Lai, Z. Miao, S.L. Chou, Nanocomposite Materials for the SodiumIon Battery:A Review, Small 14(2018) 1702514. [4] Y.H. Jung, C.H. Lim, J.-H. Kim, D.K. Kim, Na2FeP2O7 as a positive electrode material for rechargeable aqueous sodium-ion batteries, RSC Adv. 4(2014) 9799. [5] P. Barpanda, G. Liu, C.D. Ling, T. Mao, A. Yamada, Na2FeP2O7:A Safe Cathode for Rechargeable Sodium-ion Batteries, Chem. Mater. 25(2013) 3480-3487. [6] J.L. Cao, L. Ni, C.C. Qin, Y.F. Tang, Y.F. Chen, Synthesis of hierarchical Na2FeP2O7 spheres with high electrochemical performance via spray drying, Ionics (2017) 1783-1791. [7] G. Longoni, J.E. Wang, Y.H. Jung, D.K. Kim, C.M. Mari, R. Ruffo, The Na2FeP2O7- carbon nanotubes composite as high rate cathode material for sodium ion batteries, J. Power Sources 302(2016) 61-69. [8] C.Y. Chen, K. Matsumoto, T. Nohira, R. Hagiwara, Y. Orikasa, Y. Uchimoto, Pyrophosphate Na2FeP2O7 as a low-cost and high-performance positive electrode material for sodium secondary batteries utilizing an inorganic ionic liquid, J. Power Sources 246(2014) 783-787. [9] J.C. Zheng, B. Yang, X. Wang, B. Zhang, H. Tong, W. Yu, J. Zhang, Comparative Investigation of Na2FeP2O7 Sodium Insertion Material Synthesized by Using Different Sodium Sources, ACS Sustainable Chem. Eng. 6(4) (2018) 4966-4972. [10] K.D. Noun, Y. Essamlali, O. Amadine, R. Tabit, A. Fihri, C. Len, M. Zahouily, Nanostructured Pyrophosphate Na2PdP2O7-Catalyzed Suzuki-Miyaura CrossCoupling Under Microwave Irradiation, Appl. Organomet. Chem. 32(2018) 4232. [11] J. Liu, K. Tang, K. Song, P.V. Aken, Y. Yu, J. Maier, Electrospun Na3V2(PO4)3/C nanofibers as stable cathode materials for sodium-ion batteries, Nanoscale 6(2014) 5081-5086. [12] J.M. Clark, P. Barpanda, A. Yamada, M.S. Islam, Sodium-ion battery cathodes Na2FeP2O7 and Na2MnP2O7:Diffusion behaviour for high rate performance, J. Mater. Chem. A. 2(2014) 11807-11812. [13] A. Rg, B. Ssm, C. Vp, A. Pb, Structural and electrochemical investigation of binary Na2Fe1-xZnxP2O7 (0≤ x ≤ 1) pyrophosphate cathodes for sodium-ion batteries, J. Solid State Chem. 277(2019) 329-336. [14] L. Ren, L. Song, Y. Guo, Y. Wu, J. Lu, Magnesium-doped Na2FeP2O7 cathode materials for sodium-ion battery with enhanced cycling stability and rate capability, Appl. Surf. Sci. 544(2020) 148893. [15] A. Mp, P. A, B. Kpka, A. Lk, A. Kv, Electrochemical studies on Na2FeP2O7 pyrophosphate enhanced with SWCNT as intercalation compounds for Na-ion batteries:An insight into sensitive mode operations, Mater. Lett. 284(2020) 128949. [16] R.A. Shakoor, C.S. Park, A.A. Raja, J. Shin, R. Kahraman, A mixed iron-manganese based pyrophosphate cathode, Na2Fe0.5Mn0.5P2O7, for rechargeable sodium ion batteries, Phys. Chem. Chem. Phys. 18(5) (2016) 3929-3935. [17] T. Honma, N. Ito, T. Togashi, A. Sato, T. Komatsu, Triclinic Na2-xFe1+x/2P2O7/C glass-ceramics with high current density performance for sodium ion battery, J. Power Sources 227(2013) 31-34. [18] T. Honma, A. Sato, N. Ito, T. Togashi, K. Shinozaki, T. Komatsu, Crystallization behavior of sodium iron phosphate glass Na2-xFe1+0.5xP2O7 for sodium ion batteries, J. Non-Cryst. Solids 404(2014) 26-31. [19] W. Shen, H. Li, C. Wang, Z.H. Li, Q.J. Xu, H.M. Liu, Y.G. Wang, Improved electrochemical performance of the Na3V2(PO4)3 cathode by B-doping of the carbon coating layer for sodium-ion batteries, J. Mater. Chem. A 3(29) (2015) 15190-15201. [20] P. Barpanda, G.D. Liu, Z. Mohamed, C.D. Ling, A. Yamada, Structural, magnetic and electrochemical investigation of novel binary Na2-x(Fe1-yMny)P2O7 (0≤ y ≤ 1) pyrophosphate compounds for rechargeable sodium-ion batteries, Solid State Ionics 268(2014) 305-311. [21] X.B. Chen, K. Du, Y.Q. Lai, G.Z. Shang, H.X. Li, Z.W. Xiao, Y.X. Chen, J.M. Li, Z.A. Zhang, In-situ carbon-coated Na2FeP2O7 anchored in three-dimensional reduced graphene oxide framework as a durable and high-rate sodium-ion battery cathode, J. Power Sources 357(2017) 164-172. [22] B. Wang, B.H. Xu, T.F. Liu, P. Liu, C.F. Guo, S. Wang, Q.M. Wang, Z.G. Xiong, D.L. Wang, X.S. Zhao, Mesoporous carbon-coated LiFePO4 nanocrystals co-modified with graphene and Mg2+ doping as superior cathode materials for lithium ion batteries, Nanoscale 6(2) (2014) 986-995. [23] Y.Z. Ji, T. Honma, T. Komatsu, Crystallization of the Na2FexNi1-xP2O7 glass and ability of cathode for sodium-ion batteries, Front. Mater. 7(2020) 34. [24] L.Q. Mu, X. Feng, R.H. Kou, Y. Zhang, H. Guo, C.X. Tian, C.J. Sun, X.W. Du, D. Nordlund, H.L. Xin, F. Lin, Deciphering the cathode-electrolyte interfacial chemistry in sodium layered cathode materials, Adv. Energy Mater. 8(34) (2018) 1801975. [25] J.Q. Deng, W.B. Luo, X. Lu, Q.R. Yao, Z.M. Wang, H.K. Liu, H.Y. Zhou, S.X. Dou, Sodium-ion batteries:high energy density sodium-ion battery with industrially feasible and air-stable O3-type layered oxide cathode (adv. energy mater. 5/2018), Adv. Energy Mater. 8(5) (2018) 1870019. [26] J. Hwang, K. Matsumoto, R. Hagiwara, Symmetric Cell Electrochemical Impedance Spectroscopy of Na2FeP2O7 Positive Electrode Material in Ionic Liquid Electrolytes, J Phys Chem C. 122(2018) 26857-26864. [27] M. Tanabe, T. Honma, T. Komatsu, Crystallization behavior and electrochemical properties of Na2FeyMn1-yP2O7 glass, J. Non-Cryst. Solids 501(2018) 153-158. [28] P. Barpanda, T. Ye, S.I. Nishimura, S.C. Chung, Y. Yamada, M. Okubo, H.S. Zhou, A. Yamada, Sodium iron pyrophosphate:A novel 3.0 V iron-based cathode for sodium-ion batteries, Electrochem. Commun. 24(2012) 116-119. [29] G. Jo, S. Shanmugam, Single-step synthetic approach for boron-doped carbons as a non-precious catalyst for oxygen reduction in alkaline medium, Electrochem. Commun. 25(2012) 101-104. [30] L.C. Pan, Y.G. Xia, B. Qiu, H. Zhao, H.C. Guo, K. Jia, Q.W. Gu, Z.P. Liu, Structure and electrochemistry of B doped Li(Li0.2Ni0.13Co0.13Mn0.54)1-xBxO2 as cathode materials for lithium-ion batteries, J. Power Sources 327(2016) 273-280. [31] L.X. Deng, Y.L. Chen, M.Y. Yao, S.R. Wang, B.L. Zhu, W.P. Huang, S.M. Zhang, Synthesis, characterization of B-doped TiO2 nanotubes with high photocatalytic activity, J. Sol-Gel Sci. Technol. 53(3) (2010) 535-541. [32] D. Baster, K. Zheng, W. Zając, K. Świerczek, J. Molenda, Toward elucidation of delithiation mechanism of zinc-substituted LiFePO4, Electrochim. Acta 92(2013) 79-86. [33] P.-F. Wang, Y. You, Y.-X. Yin, Y.-G. Guo, An O3-type NaNi0.5Mn0.5O2 cathode for sodium-ion batteries with improved rate performance and cycling stability, J. Mater. Chem. A. 4(2016) 17660-17664. [34] Z.J. Liu, R.S. Tian, M. Mushtaq, W.J. Guo, M.M. Yao, J.J. Feng, Performance modulation through synergetic effect of interstitial water with Ti-substitution for sodium ion battery cathode, Chem. Lett. 48(7) (2019) 670-673. [35] Q. Zhang, Y.Y. Huang, Y. Liu, S.X. Sun, K. Wang, Y.Y. Li, X. Li, J.T. Han, Y.H. Huang, F-doped O3-NaNi1/3Fe1/3Mn1/3O2 as high-performance cathode materials for sodium-ion batteries, Sci. China Mater. 60(7) (2017) 629-636. [36] Y. Fang, J. Zhang, L. Xiao, X. Ai, Y. Cao, H. Yang, Phosphate framework electrode materials for sodium ion batteries, Adv. Sci. (Weinh) 4(5) (2017) 1600392. [37] M.J. Aragón, P. Lavela, G. Ortiz, R. Alcántara, J.L. Tirado, Nanometric P2-Na2/3Fe1/3Mn2/3O2 with controlled morphology as cathode for sodium-ion batteries, J. Alloy. Compd. 724(2017) 465-473. [38] J. Wang, Z.F. Zhou, Y.S. Li, M. Li, F. Wang, Q.R. Yao, Z.M. Wang, H.Y. Zhou, J.Q. Deng, High-rate performance O3-NaNi0.4Mn0.4Cu0.1Ti0.1O2 as a cathode for sodium ion batteries, J. Alloy. Compd. 792(2019) 1054-1060. |