Chinese Journal of Chemical Engineering ›› 2022, Vol. 43 ›› Issue (3): 230-239.DOI: 10.1016/j.cjche.2021.11.006
Previous Articles Next Articles
Lei Hu1, Shunhui Tao1, Junting Xian1, Xiaodong Zhang1, Yao Liu1, Xiaojie Zheng1, Xiaoqing Lin1,2,3
Received:
2021-08-26
Revised:
2021-11-03
Online:
2022-04-28
Published:
2022-03-28
Contact:
Xiaoqing Lin,E-mail:linxiaoqing@gdut.edu.cn
Supported by:
Lei Hu1, Shunhui Tao1, Junting Xian1, Xiaodong Zhang1, Yao Liu1, Xiaojie Zheng1, Xiaoqing Lin1,2,3
通讯作者:
Xiaoqing Lin,E-mail:linxiaoqing@gdut.edu.cn
基金资助:
Lei Hu, Shunhui Tao, Junting Xian, Xiaodong Zhang, Yao Liu, Xiaojie Zheng, Xiaoqing Lin. Fabricating amide functional group modified hyper-cross-linked adsorption resin with enhanced adsorption and recognition performance for 5-hydroxymethylfurfural adsorption via simple one-step[J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 230-239.
Lei Hu, Shunhui Tao, Junting Xian, Xiaodong Zhang, Yao Liu, Xiaojie Zheng, Xiaoqing Lin. Fabricating amide functional group modified hyper-cross-linked adsorption resin with enhanced adsorption and recognition performance for 5-hydroxymethylfurfural adsorption via simple one-step[J]. 中国化学工程学报, 2022, 43(3): 230-239.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2021.11.006
[1] X.Q. Lin, Y. Liu, X.J. Zheng, N. Qureshi, High-efficient cellulosic butanol production from deep eutectic solvent pretreated corn stover without detoxification, Ind. Crop. Prod. 162 (2021) 113258 [2] S.S. Chen, T. Maneerung, D.C.W. Tsang, Y.S. Ok, C.H. Wang, Valorization of biomass to hydroxymethylfurfural, levulinic acid, and fatty acid methyl ester by heterogeneous catalysts, Chem. Eng. J. 328 (2017) 246-273 [3] C. Xu, E. Paone, D. Rodríguez-Padrón, R. Luque, F. Mauriello, Recent catalytic routes for the preparation and the upgrading of biomass derived furfural and 5-hydroxymethylfurfural, Chem. Soc. Rev. 49 (13) (2020) 4273-4306 [4] C.B.T.L. Lee, T.Y. Wu, A review on solvent systems for furfural production from lignocellulosic biomass, Renew. Sustain. Energy Rev. 137 (2021) 110172 [5] X.Y. Li, R. Xu, J.X. Yang, S.X. Nie, D. Liu, Y. Liu, C.L. Si, Production of 5-hydroxymethylfurfural and levulinic acid from lignocellulosic biomass and catalytic upgradation, Ind. Crop. Prod. 130 (2019) 184-197 [6] H. Chang, I. Bajaj, A.H. Motagamwala, A. Somasundaram, G.W. Huber, C.T. Maravelias, J.A. Dumesic, Sustainable production of 5-hydroxymethyl furfural from glucose for process integration with high fructose corn syrup infrastructure, Green Chem. 23 (9) (2021) 3277-3288 [7] H. Li, Y. Zhong, L.X. Wang, Q. Deng, J. Wang, Z.L. Zeng, X.X. Cao, S.G. Deng, Functionalized metal-organic frameworks with strong acidity and hydrophobicity as an efficient catalyst for the production of 5-hydroxymethylfurfural, Chin. J. Chem. Eng. 33 (2021) 167-174 [8] H.Y. Wang, C.H. Zhu, D. Li, Q.Y. Liu, J. Tan, C.G. Wang, C.L. Cai, L.L. Ma, Recent advances in catalytic conversion of biomass to 5-hydroxymethylfurfural and 2, 5-dimethylfuran, Renew. Sustain. Energy Rev. 103 (2019) 227-247 [9] Q.D. Hou, X.H. Qi, M.N. Zhen, H.L. Qian, Y.F. Nie, C.Y.L. Bai, S.Q. Zhang, X.Y. Bai, M.T. Ju, Biorefinery roadmap based on catalytic production and upgrading 5-hydroxymethylfurfural, Green Chem. 23 (1) (2021) 119-231 [10] S.M. Kang, J.X. Fu, G. Zhang, From lignocellulosic biomass to levulinic acid:A review on acid-catalyzed hydrolysis, Renew. Sustain. Energy Rev. 94 (2018) 340-362 [11] C.L. Chen, L.C. Wang, B. Zhu, Z.Q. Zhou, S.I. El-Hout, J. Yang, J. Zhang, 2,5-Furandicarboxylic acid production via catalytic oxidation of 5-hydroxymethylfurfural:Catalysts, processes and reaction mechanism, J. Energy Chem. 54 (2021) 528-554 [12] L. Hu, L. Lin, Z. Wu, S.Y. Zhou, S.J. Liu, Recent advances in catalytic transformation of biomass-derived 5-hydroxymethylfurfural into the innovative fuels and chemicals, Renew. Sustain. Energy Rev. 74 (2017) 230-257 [13] B. Hu, L. Warczinski, X.Y. Li, M.H. Lu, J. Bitzer, M. Heidelmann, T. Eckhard, Q. Fu, J. Schulwitz, M. Merko, M.S. Li, W. Kleist, C. Hättig, M. Muhler, B.X. Peng, Formic acid-assisted selective hydrogenolysis of 5-hydroxymethylfurfural to 2,5-dimethylfuran over bifunctional Pd nanoparticles supported on N-doped mesoporous carbon, Angew. Chem. Int. Ed. 60 (12) (2021) 6807-6815 [14] F. Yang, J.J. Tang, R. Ou, Z.J. Guo, S.Y. Gao, Y.Z. Wang, X.Y. Wang, L. Chen, A.H. Yuan, Fully catalytic upgrading synthesis of 5-ethoxymethylfurfural from biomass-derived 5-hydroxymethylfurfural over recyclable layered-niobium-molybdate solid acid, Appl. Catal. B:Environ. 256 (2019) 117786 [15] L. Hu, Y.T. Jiang, Z. Wu, X.Y. Wang, A.Y. He, J.X. Xu, J.M. Xu, State-of-the-art advances and perspectives in the separation of biomass-derived 5-hydroxymethylfurfural, J. Clean. Prod. 276 (2020) 124219 [16] L.T. Mika, E. Cséfalvay, Á. Németh, Catalytic conversion ofcarbohydrates to initialplatform chemicals:Chemistry and sustainability, Chem. Rev. 118 (2) (2018) 505-613 [17] K. Enomoto, T. Hosoya, H. Miyafuji, High-yield production of 5-hydroxymethylfurfural from D-fructose, D-glucose, and cellulose by its in situ removal from the reaction system, Cellulose 25 (4) (2018) 2249-2257 [18] R.L. Johnson, F.A. Perras, M.P. Hanrahan, M. Mellmer, T.F. Garrison, T. Kobayashi, J.A. Dumesic, M. Pruski, A.J. Rossini, B.H. Shanks, Condensed phase deactivation of solid Brønstedacids in the dehydration of fructose to hydroxymethylfurfural, ACS Catal. 9 (12) (2019) 11568-11578 [19] H.Y. Wang, J.J. Cui, Y.L. Zhao, Z.Y. Li, J.J. Wang, Highly efficient separation of 5-hydroxymethylfurfural from imidazolium-based ionic liquids, Green Chem. 23 (1) (2021) 405-411 [20] A. Sarwono, Z. Man, A. Idris, A.S. Khan, N. Muhammad, C.D. Wilfred, Optimization of ionic liquid assisted sugar conversion and nanofiltration membrane separation for 5-hydroxymethylfurfural, J. Ind. Eng. Chem. 69 (2019) 171-178 [21] C.J. Zhou, C. Shen, K.Y. Ji, J.B. Yin, L. Du, Efficient production of 5-hydroxymethylfurfural enhanced by liquid-liquid extraction in amembrane dispersion microreactor, ACS Sustain. Chem. Eng. 6 (3) (2018) 3992-3999 [22] A.C. IJzer, E. Vriezekolk, T.DekicZivkovic, K. Nijmeijer, Adsorption kinetics of DowexTM OptiporeTM L493for the removal of the furan 5-hydroxymethylfurfural from sugar, J. Chem. Technol. Biotechnol. 91 (1) (2016) 96-104 [23] E. Valentin, H.G. Nam, P.H. Kim, H.W. Joo, H.J. Shim, Y.K. Chang, S. Mun, Application of a Dowex-50WX8 chromatographic process to the preparative-scale separation of galactose, levulinic acid, and 5-hydroxymethylfurfural in acid hydrolysate of agarose, Sep. Purif. Technol. 133 (2014) 297-302 [24] H. Park, J.W. Kim, K.B. Lee, S. Mun, Comparison of the process performances of a tandem 4-zone SMB and a single-cascade 5-zone SMB for separation of galactose, levulinic acid, and 5-hydroxymethylfurfural in agarose hydrolyzate, Sep. Purif. Technol. 237 (2020) 116357 [25] Y. Zhao, J. Xu, J. Wang, J.L. Wu, M.Z. Gao, B. Zheng, H. Xu, Q. Shi, J.X. Dong, Adsorptive separation offurfural/5-hydroxymethylfurfural in MAF-5 with ellipsoidal pores, Ind. Eng. Chem. Res. 59 (25) (2020) 11734-11742 [26] P. Dornath, W. Fan, Dehydration of fructose into furans over zeolite catalyst using carbon black as adsorbent, Microporous Mesoporous Mater. 191 (2014) 10-17 [27] W.C. Yoo, N. Rajabbeigi, E.E. Mallon, M. Tsapatsis, M.A. Snyder, Elucidating structure-properties relations for the design of highly selective carbon-based HMF sorbents, Microporous Mesoporous Mater. 184 (2014) 72-82 [28] W. Liu, F. Zheng, J. Li, A. Cooper, Anionic liquidreaction and separation process for production of hydroxymethylfurfural from sugars, AIChE J. 60 (1) (2014) 300-314 [29] M.León, T.D. Swift, V. Nikolakis, D.G. Vlachos, Adsorption of the compounds encountered in monosaccharide dehydration in zeolite beta, Langmuir 29 (22) (2013) 6597-6605 [30] C. Detoni, C.H. Gierlich, M. Rose, R. Palkovits, Selective liquid phaseadsorption of 5-hydroxymethylfurfural on nanoporous hyper-cross-linkedpolymers, ACS Sustain. Chem. Eng. 2 (10) (2014) 2407-2415 [31] J.Y. Zheng, X.D. He, C.L.Cai, J.X.Xiao, Y. Liu, Z. Chen, B.Y. Pan, X.Q. Lin, Adsorption isotherm, kinetics simulation and breakthrough analysis of 5-hydroxymethylfurfural adsorption/desorption behavior of a novel polar-modified post-cross-linked poly (divinylbenzene-co-ethyleneglycoldimethacrylate) resin, Chemosphere 239 (2020) 124732 [32] J.Y. Zheng, X.D. He, C.L.Cai, J.X.Xiao, Y. Liu, Z. Chen, B.Y. Pan, X.Q. Lin, Adsorption isotherm, kinetics simulation and breakthrough analysis of 5-hydroxymethylfurfural adsorption/desorption behavior of a novel polar-modified post-cross-linked poly (divinylbenzene-co-ethyleneglycoldimethacrylate) resin, Chemosphere 239 (2020) 124732 [33] H. Gao, L. Ding, W.Q. Li, G.F. Ma, H. Bai, L. Li, Hyper-cross-linked organic microporous polymers based on alternating copolymerization of bismaleimide, ACS Macro Lett. 5 (3) (2016) 377-381 [34] J.Y. Zheng, L. Hu, X.D. He, Y. Liu, X.J. Zheng, S.H. Tao, X.Q. Lin, evaluation of pore structure of polarity-controllable post-cross-linked adsorption resins on the adsorption performance of 5-hydroxymethylfurfural in both single- and ternary-component systems, Ind. Eng. Chem. Res. 59 (39) (2020) 17575-17586 [35] L. Hu, J.Y. Zheng, Q. Li, S.H. Tao, X.J. Zheng, X.D. Zhang, Y. Liu, X.Q. Lin, Adsorption of 5-hydroxymethylfurfural,levulinic acid, formic acid, and glucose using polymericresins modified with differentfunctional groups, ACS Omega 6 (26) (2021) 16955-16968 [36] H.M. Tang, W.Y.Li, H.S. Jiang, R.J.Lin, Z. Wang, J.H.Wu, G.J. He, P.R. Shearing, D.J.L. Brett, ZIF-8-derived hollow carbon for efficient adsorption of antibiotics, Nanomaterials 9(1)(2019)E117 [37] X.J. Zheng, X.L. Xian, L. Hu, S.H.Tao, X.D. Zhang, Y. Liu, X.Q.Lin, Efficient short-time hydrothermal depolymerization of sugarcane bagasse in one-pot for cellulosic ethanol production without solid-liquid separation, water washing, and detoxification, Bioresourc. Technol. 339 (2021) 125575 [38] C.J.Shen, H. Yu, Z.G. Wang, Synthesis of 1,3,5,7-tetrakis(4-cyanatophenyl)-adamantane and its microporous polycyanurate network for adsorption of organic vapors, hydrogen and carbon dioxide, Chem.Commun. 50 (76) (2014) 11238-11241 [39] B. Oktay, E.Çakmakçi, DOPO tethered Diels Alder clickable reactive silica nanoparticles for bismaleimide containing flame retardant thiol-ene nanocomposite coatings, Polymer 131 (2017) 132-142 [40] O.M. Ilinitch, V.B. Fenelonov, A.A. Lapkin, L.G. Okkel, V.V. Terskikh, K.I. Zamaraev, Intrinsic microporosity and gas transport in polyphenylene oxide polymers, Microporous Mesoporous Mater. 31 (1-2) (1999) 97-110 [41] P.M. Budd, A. Butler, J. Selbie, K. Mahmood, N.B. McKeown, B. Ghanem, K. Msayib, D. Book, A. Walton, The potential of organic polymer-based hydrogen storage materials, Phys. Chem. Chem. Phys. 9 (15) (2007) 1802-1808 [42] Y. Xu, J. Luo, X.Y. Liu, R. Liu, Polyurethane modified epoxy acrylate resins containing ε-caprolactone unit, Prog. Org. Coat.141 (2020) 105543 [43] J.P. Dhanalakshmi, M.A. Raj, C.T. Vijayakumar, Thermal degradation kinetics of structurally diverse poly(bispropargyl ethers-bismaleimide) blends, Chin. J. Polym. Sci. 34 (3) (2016) 253-267 [44] M.H. Armbruster, J.B. Austin, The adsorption of gases on planesurfaces of mica, J. Am. Chem. Soc. 60 (2) (1938) 467-475 [45] K.Y. Foo, B.H. Hameed, Insights into the modeling of adsorption isotherm systems, Chem. Eng. J. 156 (1) (2010) 2-10 [46] Z. Wang, H.M.Tang, W.Y. Li, J.W. Li, R.Y. Xu, K.N. Zhang, G.J. He, P.R. Shearing, D.J.L. Brett, Core-shell TiO2@C ultralong nanotubes with enhanced adsorption of antibiotics, J. Mater. Chem. A 7(32) (2019) 19081-19086 [47] L. Meng, X. Gui, Z. Yun, Static and dynamic studies of adsorption by four macroporous resins to enrich oridonin from Rabdosia rubescens, Chin. J. Chem. Eng. 32 (2021) 151-158 [48] Z. Wang, G.J.Wang, W.Y. Li, Z. Cui, J.H. Wu, I. Akpinar, L. Yu, G.J. He, J.Q. Hu, Loofah activated carbon with hierarchical structures for high-efficiency adsorption of multi-level antibiotic pollutants, Appl. Surf. Sci. 550 (2021) 149313 [49] J.Y.Zheng, B.Y. Pan, J.X. Xiao, X.D. He, Z. Chen, Q.L.Huang, X.Q.Lin, Experimental and mathematical simulation of noncompetitive and competitive adsorptiondynamic of formic acid-levulinic acid-5-hydroxymethylfurfural from single, binary, andternary systems in a fixed-bed column of SY-01 resin, Ind. Eng. Chem. Res. 57 (25) (2018) 8518-8528 [50] R. Khosravi, G. Moussavi, M.T. Ghaneian, M.H. Ehrampoush, B. Barikbin, A.A. Ebrahimi, G. Sharifzadeh, Chromium adsorption from aqueous solution using novel green nanocomposite:Adsorbent characterization, isotherm, kinetic and thermodynamic investigation, J. Mol. Liq. 256 (2018) 163-174 [51] X.Q. Zhou, J.S. Fan, N. Li, W.B. Qian, X.Q. Lin, J.L. Wu, J. Xiong, J.X. Bai, H.J. Ying, Adsorption thermodynamics and kinetics of uridine 5 '-monophosphate on a gel-typeanion exchange resin, Ind. Eng. Chem. Res. 50 (15) (2011) 9270-9279 [52] Y. Yu, Y.Y. Zhuang, Z.H. Wang, M.Q. Qiu, Adsorption of water-soluble dyes onto modified resin, Chemosphere 54 (3) (2004) 425-430 [53] P.D. Pathak, S.A. Mandavgane, Preparation and characterization of raw and carbon from banana peel by microwave activation:Application in citric acid adsorption, J. Environ. Chem. Eng. 3 (4) (2015) 2435-2447 [54] O. Pezoti, A.L. Cazetta, K.C. Bedin, L.S. Souza, A.C. Martins, T.L. Silva, O.O. SantosJr, J.V. Visentainer, V.C. Almeida, NaOH-activated carbon of high surface area produced from guava seeds as a high-efficiency adsorbent for amoxicillin removal:Kinetic, isotherm and thermodynamic studies, Chem. Eng. J. 288 (2016) 778-788 [55] T.S. Anirudhan, P.G. Radhakrishnan, Kinetics, thermodynamics and surface heterogeneity assessment of uranium(VI) adsorption onto cation exchange resin derived from a lignocellulosic residue, Appl. Surf. Sci. 255 (9) (2009) 4983-4991 [56] X.J. Hu, Y.S. Li, Y. Wang, X.X. Li, H.Y. Li, X. Liu, P. Zhang, Adsorption kinetics, thermodynamics and isotherm of thiacalix[4]arene-loaded resin to heavy metal ions, Desalination 259 (1-3) (2010) 76-83 [57] Y.Y. Chen, D.J. Zhang, Adsorption kinetics, isotherm and thermodynamics studies of flavones from Vaccinium Bracteatum Thunb leaves on NKA-2 resin, Chem. Eng. J. 254 (2014) 579-585 [58] X.Q. Lin, Q.L.Huang, G.X. Qi, L. Xiong, C. Huang, X.F. Chen, H.L.Li, X.D. Chen, Adsorption behavior of levulinic acid onto microporous hyper-cross-linked polymers in aqueous solution:Equilibrium, thermodynamic, kinetic simulation and fixed-bed column studies, Chemosphere 171 (2017) 231-239 [59] D.K. Mahmoud, M.A.M. Salleh, W.A. Karim, A. Idris, Z.Z. Abidin, Batch adsorption of basic dye using acid treated kenaf fibre char:Equilibrium, kinetic and thermodynamic studies, Chem. Eng. J.181-182(2012) 449-457 [60] S. Lagergren, Zur Theorie der sogenannten adsorption gelöster stoffe, Kungliga Svenska Vetenskapsakademiens, Handlingar 24 (1898) 1-39 [61] Y.S. Ho, G. McKay, Pseudo-second order model for sorption processes, Process. Biochem. 34 (5) (1999) 451-465 [62] S.R. Cao, T.T. Tang, C.X.Xi, Z.Q. Chen, Fabricating magnetic GO/ZIF-8 nanocomposite for amphetamine adsorption from water:Capability and mechanism, Chem. Eng. J. 422 (2021) 130096 |
[1] | Xinxin Zhao, Wenlong Xu, Shuang Chen, Huie Liu, Xiaofei Yan, Yan Bao, Zexin Liu, Fan Yang, Huan Zhang, Ping Yu. Fabrication of super-elastic graphene aerogels by ambient pressure drying and application to adsorption of oils [J]. Chinese Journal of Chemical Engineering, 2022, 47(7): 89-97. |
[2] | Lei Sun, Zhongjun Zhao, Xiushan Yang, Yan Sun, Quande Li, Chunhui Luo, Qiang Zhao. Thermochemical decomposition of phosphogypsum with Fe-P slag via a solid-state reaction [J]. Chinese Journal of Chemical Engineering, 2022, 47(7): 113-119. |
[3] | Jinglei Cui, Qian Wang, Jianming Gao, Yanxia Guo, Fangqin Cheng. The selective adsorption of rare earth elements by modified coal fly ash based SBA-15 [J]. Chinese Journal of Chemical Engineering, 2022, 47(7): 155-164. |
[4] | Zhibin Ma, Xueli Zhang, Guangjun Lu, Yanxia Guo, Huiping Song, Fangqin Cheng. Hydrothermal synthesis of zeolitic material from circulating fluidized bed combustion fly ash for the highly efficient removal of lead from aqueous solution [J]. Chinese Journal of Chemical Engineering, 2022, 47(7): 193-205. |
[5] | Hualiang An, Rui Wang, Wenhao Wang, Daolai Sun, Xinqiang Zhao, Yanji Wang. A core–shell Ni/SiO2@TiO2 catalyst for highly selective one-step synthesis of 2-propylheptanol from n-pentanal [J]. Chinese Journal of Chemical Engineering, 2022, 46(6): 104-112. |
[6] | Yu Zhang, Ling Zhao, Ziang Chen, Xinyong Li. Promotional effect for SCR of NO with CO over MnOx-doped Fe3O4 nanoparticles derived from metal-organic frameworks [J]. Chinese Journal of Chemical Engineering, 2022, 46(6): 113-125. |
[7] | Jipeng Dong, Fei Wang, Guanghui Chen, Shougui Wang, Cailin Ji, Fei Gao. Fabrication of nickel oxide functionalized zeolite USY composite as a promising adsorbent for CO2 capture [J]. Chinese Journal of Chemical Engineering, 2022, 46(6): 207-213. |
[8] | Xin Ren, Li Leng, Yueqiang Cao, Jing Zhang, Xuezhi Duan, Xueqing Gong, Jinghong Zhou, Xinggui Zhou. Enhanced recycling performance of bimetallic Ir-Re/SiO2 catalyst by amberlyst-15 for glycerol hydrogenolysis [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 171-181. |
[9] | Yaling Li, Hao Ai, Liangzhi Qiao, Yinghong Wang, Kaifeng Du. Fabrication and characterization of hierarchical porous Ni2+ doped hydroxyapatite microspheres and their enhanced protein adsorption capacity [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 238-247. |
[10] | Minxia Liu, Dang Wu, Dongling Qin, Gang Yang. Spray-drying assisted layer-structured H2TiO3 ion sieve synthesis and lithium adsorption performance [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 258-267. |
[11] | Tao Sun, Mingjun Pang, Yang Fei. Numerical study on hydrodynamic characteristics of spherical bubble contaminated by surfactants under higher Reynolds numbers [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 268-283. |
[12] | Yue Liang, Wenjuan Wang, Yan Sun, Xiaoyan Dong. Insights into the cross-amyloid aggregation of Aβ40 and its N-terminal truncated peptide Aβ11-40 affected by epigallocatechin gallate [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 284-293. |
[13] | Haoyu Yao, Dongxia Yan, Xingmei Lu, Qing Zhou, Yinan Bao, Junli Xu. Solubility determination and thermodynamic modeling of bis-2-hydroxyethyl terephthalate (BHET) in different solvents [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 294-300. |
[14] | Jingsi Cui, Huanxi Xu, Yanfeng Ding, Jingjing Tian, Xu Zhang, Guanping Jin. Recovery of lithium using H4Mn3.5Ti1.5O12/reduced graphene oxide/polyacrylamide composite hydrogel from brine by Ads-ESIX process [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 20-28. |
[15] | Peiwei Han, Chunhua Xu, Yamin Wang, Chenglin Sun, Huangzhao Wei, Haibo Jin, Ying Zhao, Lei Ma. The high catalytic activity and strong stability of 3%Fe/AC catalysts for catalytic wet peroxide oxidation of m-cresol: The role of surface functional groups and FeOx particles [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 105-114. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||