Chinese Journal of Chemical Engineering ›› 2024, Vol. 73 ›› Issue (9): 90-100.DOI: 10.1016/j.cjche.2024.05.009
Previous Articles Next Articles
Lifang Ge, Meizhen Gao, Xiaosheng Zhang, Jiang Wang, Qi Shi, Jinxiang Dong
Received:
2024-03-06
Revised:
2024-05-14
Accepted:
2024-05-14
Online:
2024-05-27
Published:
2024-11-21
Contact:
Qi Shi,E-mail:shiqi594@163.com
Supported by:
Lifang Ge, Meizhen Gao, Xiaosheng Zhang, Jiang Wang, Qi Shi, Jinxiang Dong
通讯作者:
Qi Shi,E-mail:shiqi594@163.com
基金资助:
Lifang Ge, Meizhen Gao, Xiaosheng Zhang, Jiang Wang, Qi Shi, Jinxiang Dong. Hydrophobic CHA-ZIFs with a junctional trap between cha and d6r cages for adsorption of 2,3-butanediol in aqueous solution[J]. Chinese Journal of Chemical Engineering, 2024, 73(9): 90-100.
Lifang Ge, Meizhen Gao, Xiaosheng Zhang, Jiang Wang, Qi Shi, Jinxiang Dong. Hydrophobic CHA-ZIFs with a junctional trap between cha and d6r cages for adsorption of 2,3-butanediol in aqueous solution[J]. 中国化学工程学报, 2024, 73(9): 90-100.
[1] Y.Q. Sun, J.T. Shen, L. Yan, J.J. Zhou, L.L. Jiang, Y. Chen, J.L. Yuan, E.M. Feng, Z.L. Xiu, Advances in bioconversion of glycerol to 1,3-propanediol: Prospects and challenges, Process. Biochem. 71 (2018) 134-146. [2] S.Q. Xie, Z.X. Li, G.D. Zhu, W.L. Song, C.H. Yi, Cleaner production and downstream processing of bio-based 2, 3-butanediol: A review, J. Clean. Prod. 343 (2022) 131033. [3] R.K. Saxena, P. Anand, S. Saran, J. Isar, Microbial production of 1,3-propanediol: Recent developments and emerging opportunities, Biotechnol. Adv. 27 (6) (2009) 895-913. [4] F.H. Zhu, D.H. Liu, Z. Chen, Recent advances in biological production of 1,3-propanediol: New routes and engineering strategies, Green Chem. 24 (4) (2022) 1390-1403. [5] J.M. Park, C. Rathnasingh, H. Song, Metabolic engineering of Klebsiella pneumoniae based on in silico analysis and its pilot-scale application for 1,3-propanediol and 2,3-butanediol co-production, J. Ind. Microbiol. Biotechnol. 44 (3) (2017) 431-441. [6] M. Durgapal, V. Kumar, T.H. Yang, H.J. Lee, D. Seung, S. Park, Production of 1,3-propanediol from glycerol using the newly isolated Klebsiella pneumoniae J2B, Bioresour. Technol. 159 (2014) 223-231. [7] B.R. Oh, J.W. Seo, S.Y. Heo, W.K. Hong, L.H. Luo, S. Kim, D.H. Park, C.H. Kim, Optimization of culture conditions for 1,3-propanediol production from glycerol using a mutant strain of Klebsiella pneumoniae, Appl. Biochem. Biotechnol. 166 (1) (2012) 127-137. [8] Z.L. Xiu, A.P. Zeng, Present state and perspective of downstream processing of biologically produced 1,3-propanediol and 2,3-butanediol, Appl. Microbiol. Biotechnol. 78 (6) (2008) 917-926. [9] C.X. Cui, Z. Zhang, B.Q. Chen, Environmentally-friendly strategy for separation of 1,3-propanediol using biocatalytic conversion, Bioresour. Technol. 245 (Pt A) (2017) 477-482. [10] Z. Wang, Z. Wu, T.W. Tan, Studies on purification of 1,3-propanediol by molecular distillation, Biotechnol. Bioprocess Eng. 18 (4) (2013) 697-702. [11] J.M. Hong, N. Van Duc Long, G.R. Harvianto, J. Haider, M. Lee, Design and optimization of multi-effect-evaporation-assisted distillation configuration for recovery of 2,3-butanediol from fermentation broth, Chem. Eng. Process. Process. Intensif. 136 (2019) 107-115. [12] D. Wischral, H.X. Fu, F.L. Pellegrini Pessoa, N. Pereira, S.T. Yang, Effective and simple recovery of 1,3-propanediol from a fermented medium by liquid-liquid extraction system with ethanol and K3PO4, Chin. J. Chem. Eng. 26 (1) (2018) 104-108. [13] J.J. Malinowski, Reactive extraction for downstream separation of 1,3-propanediol, Biotechnol. Prog. 16 (1) (2000) 76-79. [14] N. Vivek, A. Pandey, P. Binod, An efficient aqueous two phase systems using dual inorganic electrolytes to separate 1,3-propanediol from the fermented broth, Bioresour. Technol. 254 (2018) 239-246. [15] Z. Wang, Z. Wu, T.W. Tan, Sorption equilibrium, mechanism and thermodynamics studies of 1,3-propanediol on beta zeolite from an aqueous solution, Bioresour. Technol. 145 (2013) 37-42. [16] G.F. Li, W.L. Liu, X. Wang, Q.P. Yuan, Separation of 2,3-butanediol using ZSM-5 zeolite modified with hydrophobic molecular spaces, Chem. Lett. 43 (4) (2014) 411-413. [17] S. Chen, G.F. Li, Q.P. Yuan, High adsorption capacity by creating a hydrophobic/hydrophilic layer on the surface of silicalite-1, RSC Adv. 6 (101) (2016) 99509-99513. [18] H. Jin, Y.S. Li, W.S. Yang, Adsorption of biomass-derived polyols onto metal-organic frameworks from aqueous solutions, Ind. Eng. Chem. Res. 57 (35) (2018) 11963-11969. [19] J.S. Zhang, J.L. Wu, M.Z. Gao, L.F. Ge, M.Y. Wang, J.X. Dong, Q. Shi, Introduction of hydrogen bond recognition sites in ZIF-71 for effective separation of bio-diols in aqueous solutions, AIChE. J. 70 (1) (2024) e18239. [20] P. Anand, R.K. Saxena, R.G. Marwah, A novel downstream process for 1,3-propanediol from glycerol-based fermentation, Appl. Microbiol. Biotechnol. 90 (4) (2011) 1267-1276. [21] S.Z. Wang, L.H. Qiu, H.F. Dai, X.F. Zeng, B.S. Fang, Highly pure 1, 3-propanediol: Separation and purification from crude glycerol-based fermentation, Eng. Life Sci. 15 (8) (2015) 788-796. [22] Y.Q. Peng, S.Z. Wang, L. Lan, W. Chen, B.S. Fang, Resin adsorption application for product separation and catalyst recycling in coupled enzymatic catalysis to produce 1,3-propanediol and dihydroxyacetone for repeated batch, Eng. Life Sci. 13 (5) (2013) 479-486. [23] B.X. Gao, M.H. Huang, Z.G. Zhang, Q.W. Yang, B.G. Su, Y.W. Yang, Q.L. Ren, Z.B. Bao, Hybridization of metal-organic framework and monodisperse spherical silica for chromatographic separation of xylene isomers, Chin. J. Chem. Eng. 27 (4) (2019) 818-826. [24] D.F. Lv, J.H. Xu, P.J. Zhou, S. Tu, F. Xu, J. Yan, H.X. Xi, Z.W. Liu, W.B. Yuan, Q. Fu, X. Chen, Q.B. Xia, Highly selective separation of propylene/propane mixture on cost-effectively four-carbon linkers based metal-organic frameworks, Chin. J. Chem. Eng. 51 (2022) 126-134. [25] Y.F. Su, X.K. Zhang, H. Li, D.L. Peng, Y.T. Zhang, In-situ incorporation of halloysite nanotubes with 2D zeolitic imidazolate framework-L based membrane for dye/salt separation, Chin. J. Chem. Eng. 58 (2023) 103-111. [26] Z.D. Ma, Y.X. Li, M.M. Jin, X.Q. Liu, L.B. Sun, Fabrication of adsorbents with enhanced CuI stability: Creating a superhydrophobic microenvironment through grafting octadecylamine, Chin. J. Chem. Eng. 55 (2023) 41-48. [27] J.J. Song, Q.Q. Meng, J. Wang, X.L. Guo, P. Wei, J.X. Dong, Q. Shi, Length exclusion separation of acetone/butanol using ZIF-302 derivatives with adjustable ellipsoidal cage sizes, Sep. Purif. Technol. 312 (2023) 123371. [28] Q. Shi, W.J. Xu, R.K. Huang, W.X. Zhang, Y. Li, P.F. Wang, F.N. Shi, L.B. Li, J.P. Li, J.X. Dong, Zeolite CAN and AFI-type zeolitic imidazolate frameworks with large 12-membered ring pore openings synthesized using bulky amides as structure-directing agents, J. Am. Chem. Soc. 138 (50) (2016) 16232-16235. [29] M.Z. Gao, R.K. Huang, B. Zheng, P.F. Wang, Q. Shi, W.X. Zhang, J.X. Dong, Large breathing effect in ZIF-65(Zn) with expansion and contraction of the SOD cage, Nat. Commun. 13 (1) (2022) 4569. [30] A. Phan, C.J. Doonan, F.J. Uribe-Romo, C.B. Knobler, M. O’Keeffe, O.M. Yaghi, Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks, Acc. Chem. Res. 43 (1) (2010) 58-67. [31] N.T.T. Nguyen, H. Furukawa, F. Gandara, H.T. Nguyen, K.E. Cordova, O.M. Yaghi, Selective capture of carbon dioxide under humid conditions by hydrophobic chabazite-type zeolitic imidazolate frameworks, Angew. Chem. Int. Ed. 53 (40) (2014) 10645-10648. [32] A.S. Ghanem, M. Ba-Shammakh, M. Usman, M.F. Khan, H. Dafallah, M.A. Habib, B.A. Al-Maythalony, High gas permselectivity in ZIF-302/polyimide self-consistent mixed-matrix membrane, J. Appl. Polym. Sci. 137 (13) (2020) 48513. [33] H.Q. Lian, E.Y. Song, B. Bao, W.H. Yang, Y. Yang, Y.C. Pan, S.G. Ju, Highly steam-stable CHA-type zeolite imidazole framework ZIF-302 membrane for hydrogen separation, Sep. Purif. Technol. 281 (2022) 119875. [34] M. Sarfraz, M. Ba-Shammakh, Synergistic effect of adding graphene oxide and ZIF-301 to polysulfone to develop high performance mixed matrix membranes for selective carbon dioxide separation from post combustion flue gas, J. Membr. Sci. 514 (2016) 35-43. [35] M. van Essen, R. Thur, M. Houben, I.F.J. Vankelecom, Z. Borneman, K. Nijmeijer, Tortuous mixed matrix membranes: A subtle balance between microporosity and compatibility, J. Membr. Sci. 635 (2021) 119517. [36] J.W. Yuan, H.P. Zhu, J.J. Sun, Y.Y. Mao, G.P. Liu, W.Q. Jin, Novel ZIF-300 mixed-matrix membranes for efficient CO2 capture, ACS Appl. Mater. Interfaces 9 (44) (2017) 38575-38583. [37] M. Sarfraz, M. Ba-Shammakh, Water-stable ZIF-300/Ultrason® mixed-matrix membranes for selective CO2 capture from humid post combustion flue gas, Chin. J. Chem. Eng. 26 (5) (2018) 1012-1021. [38] Dassault Systemes BIOVIA, Materials Studio Modeling Environment, Release 2017, Dassault Systemes BIOVIA, San Diego, CA, 2016. [39] B. Chen, J.J. Potoff, J.I. Siepmann, Monte Carlo calculations for alcohols and their mixtures with alkanes. Transferable potentials for phase equilibria. 5. United-atom description of primary, secondary, and tertiary alcohols, J. Phys. Chem. B 105 (15) (2001) 3093-3104. [40] J.M. Stubbs, J.J. Potoff, J. Ilja Siepmann, Transferable potentials for phase equilibria. 6. United-atom description for ethers, glycols, ketones, and aldehydes, J. Phys. Chem. B 108 (45) (2004) 17596-17605. [41] S.L. Mayo, B.D. Olafson, W.A. Goddard, DREIDING: A generic force field for molecular simulations, J. Phys. Chem. 94 (26) (1990) 8897-8909. [42] M.Z. Gao, J. Wang, Z.H. Rong, Q. Shi, J.X. Dong, A combined experimental-computational investigation on water adsorption in various ZIFs with the SOD and RHO topologies, RSC Adv. 8 (69) (2018) 39627-39634. |
[1] | Alireza Nouri, Siew Fen Chua, Ebrahim Mahmoudi, Abdul Wahab Mohammad, Wei Lun Ang. Fabrication of graphene oxide decorated with poly(dimethyl amino ethyl methacrylate) brush for efficient Cr(VI) adsorption from aqueous solution [J]. Chinese Journal of Chemical Engineering, 2024, 73(9): 51-61. |
[2] | Na Li, Ninggui Ma, Yulu Zhan, Haishun Wu, Jun Fan, Jianfeng Jia. Bifunctional functionalized two-dimensional transition metal borides for fast reaction redox kinetics in lithium-sulfur batteries [J]. Chinese Journal of Chemical Engineering, 2024, 73(9): 81-89. |
[3] | Yuntao Liang, Yongjing Wang, Wenbin Feng, Jingkai Xu, Wei Xiao. A nonwoven supported mixed matrix membrane for CH4/N2 separation [J]. Chinese Journal of Chemical Engineering, 2024, 73(9): 101-108. |
[4] | Di Wu, Ping Hu, Hui Li, Zhidan Xue, Hang Lv, Yimeng Guo, Changwei Hu, Liangfang Zhu. Influences of fractional separation on the structure and reactivity of wheat straw cellulose for producing 5-hydroxymethylfurfural [J]. Chinese Journal of Chemical Engineering, 2024, 73(9): 154-162. |
[5] | Wenwen Gao, Yuhuan Wang, Wang Li, Zhifang Zhang, Ting Su, Miao Mu, Ying Gong, Rui Dang, Rui Bai, E Zheng, Wei Zhao. A Z-scheme LaFeO3-CuFe2O4 composite for sulfate radical-based photocatalytic process: Synergistic effect and mechanism [J]. Chinese Journal of Chemical Engineering, 2024, 73(9): 256-269. |
[6] | Hongmei Wu, Xinyu Liu, Yu Guo. Preparation of a zeolite-palladium composite membrane for hydrogen separation: Influence of zeolite film on membrane stability [J]. Chinese Journal of Chemical Engineering, 2024, 72(8): 44-52. |
[7] | Juan Wang, Yanbing Zhu, Zedong Jiang, Xiping Du, Mingjing Zheng, Lijun Li, Hui Ni, Yuanpeng Wang, Zhipeng Li, Qingbiao Li. Characteristics and mechanism of Ni2+ and Cd2+ adsorption by recovered perlite from agar extraction residue [J]. Chinese Journal of Chemical Engineering, 2024, 72(8): 141-152. |
[8] | Chunliang Liu, Jianhui Zhong, Ranran Wei, Jiuxu Ruan, Kaicong Wang, Zhaoyou Zhu, Yinglong Wang, Limei Zhong. Process design and intensification of multicomponent azeotropes special distillation separation via molecular simulation and system optimization [J]. Chinese Journal of Chemical Engineering, 2024, 71(7): 24-44. |
[9] | Yanran Zhu, Yue Zhou, Qian Chen, Rongqiang Fu, Zhaoming Liu, Liang Ge, Tongwen Xu. Waste acid recovery utilizing monovalent cation permselective membranes through selective electrodialysis [J]. Chinese Journal of Chemical Engineering, 2024, 71(7): 45-57. |
[10] | Junjie Cai, Xijian Li, Hao Sui, Honggao Xie. Study on the evolution of solid–liquid–gas in multi-scale pore methane in tectonic coal [J]. Chinese Journal of Chemical Engineering, 2024, 71(7): 122-131. |
[11] | Lixin Chen, Hui Zhang, Linxi Hou, Xin Ge. Metal-organic-framework-derived copper-based catalyst for multicomponent C-S coupling reaction [J]. Chinese Journal of Chemical Engineering, 2024, 70(6): 1-8. |
[12] | B. A. Abdulkadir, R. S. R. Mohd Zaki, A. T. Abd Wahab, S. N. Miskan, Anh-Tam Nguyen, Dai-Viet N. Vo, H. D. Setiabudi. A concise review on surface and structural modification of porous zeolite scaffold for enhanced hydrogen storage [J]. Chinese Journal of Chemical Engineering, 2024, 70(6): 33-53. |
[13] | Jing Wen, Ruirui Yuan, Tao Jiang, Tangxia Yu, Yufan Zhang. Solvothermal synthesis and adsorption performance of layered boehmite using aluminum chloride and high-alumina fly ash [J]. Chinese Journal of Chemical Engineering, 2024, 70(6): 280-290. |
[14] | Huanxi Xu, Peihua Lin, Pei-Jun Liu, Hai-Gang Liu, Hui-Bin Guo, Chao-Xiang Wu, Ming Fang, Xu Zhang, Guan-Ping Jin. Removal of rubidium from brine by an integrated film of sulfonated polysulfone/graphene/potassium copper ferricyanide [J]. Chinese Journal of Chemical Engineering, 2024, 69(5): 112-121. |
[15] | Jie Zhang, Xingzhe Guo, Bing Lin, Guangzu Xiong, Hanshuang Wang, Min Zhang, Liwen Fan, Bingwen Li, Shuisheng Chen. Efficient adsorption separation of methane from C2-C3 hydrocarbons in a Co(II)-nodes metal-organic framework [J]. Chinese Journal of Chemical Engineering, 2024, 69(5): 192-198. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 33
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 60
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||