[1] J.B. Goodenough, Y. Kim, Challenges for rechargeable Li batteries, Chem. Mater. 22 (3) (2010) 587-603. [2] J.B. Goodenough, K.S. Park, The Li-ion rechargeable battery: A perspective, J. Am. Chem. Soc. 135 (4) (2013) 1167-1176. [3] P.G. Bruce, S.A. Freunberger, L.J. Hardwick, J.M. Tarascon, Li-O2 and Li-S batteries with high energy storage, Nat. Mater. 11 (1) (2011) 19-29. [4] J.W. Choi, D. Aurbach, Promise and reality of post-lithium-ion batteries with high energy densities, Nat. Rev. Mater. 1 (4) (2016) 16013. [5] A. Manthiram, Y.Z. Fu, S.H. Chung, C.X. Zu, Y.S. Su, Rechargeable lithium-sulfur batteries, Chem. Rev. 114 (23) (2014) 11751-11787. [6] F.L. Zhao, J.H. Xue, W. Shao, H. Yu, W. Huang, J. Xiao, Toward high-sulfur-content, high-performance lithium-sulfur batteries: Review of materials and technologies, J. Energy Chem. 80 (2023) 625-657. [7] Q.J. Shao, S.D. Zhu, J. Chen, A review on lithium-sulfur batteries: Challenge, development, and perspective, Nano Res. 16 (6) (2023) 8097-8138. [8] Y.X. Yin, S. Xin, Y.G. Guo, L.J. Wan, Lithium-sulfur batteries: Electrochemistry, materials, and prospects, Angew Chem Int Ed Engl 52 (50) (2013) 13186-13200. [9] S.Y. Wang, Z.W. Wang, F.Z. Chen, B. Peng, J. Xu, J.Z. Li, Y.H. Lv, Q. Kang, A.L. Xia, L.B. Ma, Electrocatalysts in lithium-sulfur batteries, Nano Res. 16 (4) (2023) 4438-4467. [10] R.Y. Deng, M. Wang, H.Y. Yu, S.R. Luo, J.H. Li, F.L. Chu, B. Liu, F.X. Wu, Recent advances and applications toward emerging lithium-sulfur batteries: Working principles and opportunities, ENERGY ENVIRONMENTAL Mater. 5 (3) (2022) 777-799. [11] S.F. Ng, M.Y.L. Lau, W.J. Ong, Lithium-sulfur battery cathode design: Tailoring metal-based nanostructures for robust polysulfide adsorption and catalytic conversion, Adv. Mater. 33 (50) (2021) e2008654. [12] J. Liang, Z.H. Sun, F. Li, H.M. Cheng, Carbon materials for Li-S batteries: Functional evolution and performance improvement, Energy Storage Mater. 2 (2016) 76-106. [13] X. Ji, K.T. Lee, L.F. Nazar, A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries, Nat. Mater. 8 (6) (2009) 500-506. [14] X.C. Liu, S.P. Zhou, M. Liu, G.L. Xu, X.D. Zhou, L. Huang, S.G. Sun, K. Amine, F.S. Ke, Utilizing a metal as a sulfur host for high performance Li-S batteries, Nano Energy 50 (2018) 685-690. [15] S. Deng, T. Guo, J. Heier, C.J. Zhang, Unraveling polysulfide’s adsorption and electrocatalytic conversion on metal oxides for Li-S batteries, Adv. Sci. 10 (5) (2023) e2204930. [16] B. Yan, X.F. Li, W. Xiao, J.H. Hu, L.L. Zhang, X.L. Yang, Design, synthesis, and application of metal sulfides for Li-S batteries: Progress and prospects, J. Mater. Chem. A 8 (35) (2020) 17848-17882. [17] G.L. Liu, C. Yuan, P. Zeng, C. Cheng, T.R. Yan, K.H. Dai, J. Mao, L. Zhang, Bidirectionally catalytic polysulfide conversion by high-conductive metal carbides for lithium-sulfur batteries, J. Energy Chem. 67 (2022) 73-81. [18] N. Li, Q.Q. Meng, X.H. Zhu, Z. Li, J.L. Ma, C.X. Huang, J. Song, J. Fan, Lattice constant-dependent anchoring effect of MXenes for lithium-sulfur (Li-S) batteries: A DFT study, Nanoscale 11 (17) (2019) 8485-8493. [19] C. He, Y. Liang, W.X. Zhang, Design of novel transition-metal-doped C6N2 with high-efficiency polysulfide anchoring and catalytic performances toward application in lithium-sulfur batteries, ACS Appl. Mater. Interfaces 14 (25) (2022) 29120-29130. [20] C. He, J.L. Ma, Y.B. Wu, W.X. Zhang, Design of novel transition-metal-doped C4N4 as highly effective electrocatalysts for nitrogen fixation with a new intrinsic descriptor, J. Energy Chem. 84 (2023) 131-139. [21] Y.B. Wu, C. He, W.X. Zhang, Building up a general selection strategy and catalytic performance prediction expressions of heteronuclear double-atom catalysts for N2 reduction, J. Energy Chem. 82 (2023) 375-386. [22] W.X. Zhang, J.H. Zhang, J.Q. Guo, C. He, J.R. Wen, NiS2 nanospheres coated by nitrogen-doped carbon for enhanced sodium storage performance, J. Alloys Compd. 937 (2023) 168379. [23] W.X. Zhang, J.T. Hou, M. Bai, C. He, J.R. Wen, Construction of novel ZnO/Ga2SSe (GaSe) vdW heterostructures as efficient catalysts for water splitting, Appl. Surf. Sci. 634 (2023) 157648. [24] B. Anasori, M.R. Lukatskaya, Y. Gogotsi, 2D metal carbides and nitrides (MXenes) for energy storage. MXenes. New York: Jenny Stanford Publishing, (2023) 677-722. [25] A. VahidMohammadi, J. Rosen, Y. Gogotsi, The world of two-dimensional carbides and nitrides (MXenes), Science 372 (6547) (2021) eabf1581. [26] Z.L. Guo, J. Zhou, Z.M. Sun, New two-dimensional transition metal borides for Li ion batteries and electrocatalysis, J. Mater. Chem. A 5 (45) (2017) 23530-23535. [27] H.M. Zhang, H.M. Xiang, F.Z. Dai, Z.L. Zhang, Y.C. Zhou, First demonstration of possible two-dimensional MBene CrB derived from MAB phase Cr2AlB2, J. Mater. Sci. Technol. 34 (11) (2018) 2022-2026. [28] L. Alameda, R.W. Lord, J.A. Barr, P. Moradifar, Z.P. Metzger, B.C. Steimle, C.F. Holder, N. Alem, S.B. Sinnott, R.E. Schaak, Multi-step topochemical pathway to metastable Mo2AlB2 and related two-dimensional nanosheet heterostructures, J. Am. Chem. Soc. 141 (27) (2019) 10852-10861. [29] J.J. Wang, T.N. Ye, Y.T. Gong, J.Z. Wu, N.X. Miao, T. Tada, H. Hosono, Discovery of hexagonal ternary phase Ti2InB2 and its evolution to layered boride TiB, Nat. Commun. 10 (1) (2019) 2284. [30] T. Bo, P.F. Liu, J.R. Zhang, F.W. Wang, B.T. Wang, Tetragonal and trigonal Mo2B2 monolayers: Two new low-dimensional materials for Li-ion and Na-ion batteries, Phys. Chem. Chem. Phys. 21 (9) (2019) 5178-5188. [31] J. Jia, B.J. Li, S.Q. Duan, Z. Cui, H.T. Gao, Monolayer MBenes: Prediction of anode materials for high-performance lithium/sodium ion batteries, Nanoscale 11 (42) (2019) 20307-20314. [32] B.K. Zhang, J. Zhou, Z.L. Guo, Q. Peng, Z.M. Sun, Two-dimensional chromium boride MBenes with high HER catalytic activity, Appl. Surf. Sci. 500 (2020) 144248. [33] T. Zhang, B.K. Zhang, Q. Peng, J. Zhou, Z.M. Sun, Mo2B2 MBene-supported single-atom catalysts as bifunctional HER/OER and OER/ORR electrocatalysts, J. Mater. Chem. A 9 (1) (2021) 433-441. [34] L. Lin, P. Shi, L. Fu, C.Z. He, J.R. Huo, C.X. Zhao, K. Xie, L.B. Yan, L.H. Zhu, J.W. Sun, Z.Y. Zhang, First-principles study of two-dimensional material Cr2B2 as catalyst for electrochemical nitrogen reduction reaction, J. Electroanal. Chem. 899 (2021) 115677. [35] M.K. Yao, Z.H. Shi, P. Zhang, W.J. Ong, J.Z. Jiang, W.Y. Ching, N. Li, Density functional theory study of single metal atoms embedded into MBene for electrocatalytic conversion of N2 to NH3, ACS Appl. Nano Mater. 3 (10) (2020) 9870-9879. [36] X.L. Liu, Z.X. Liu, H.Q. Deng, Theoretical evaluation of MBenes as catalysts for the CO2 reduction reaction, J. Phys. Chem. C 125 (35) (2021) 19183-19189. [37] B.C. Liang, N.G. Ma, Y.H. Wang, T.R. Wang, J. Fan, N-functionalized Ti2B MBene as high-performance anode materials for sodium-ion batteries: A DFT study, Appl. Surf. Sci. 599 (2022) 153927. [38] S.F. Wang, B.T. Wang, T. Bo, J.R. Zhang, F.W. Wang, Theoretical investigation of Ti2B monolayer as powerful anode material for Li/Na batteries with high storage capacity, Appl. Surf. Sci. 538 (2021) 148048. [39] N.G. Ma, T.R. Wang, N. Li, Y.R. Li, J. Fan, New phases of MBenes M2B (M = Sc, Ti, and V) as high-capacity electrode materials for rechargeable magnesium ion batteries, Appl. Surf. Sci. 571 (2022) 151275. [40] X.H. Zha, P.X. Xu, Q. Huang, S.Y. Du, R.Q. Zhang, Mo2B, an MBene member with high electrical and thermal conductivities, and satisfactory performances in lithium ion batteries, Nanoscale Adv. 2 (1) (2019) 347-355. [41] D.S. Wang, F. Li, R.Q. Lian, J. Xu, D.X. Kan, Y.H. Liu, G. Chen, Y. Gogotsi, Y.J. Wei, A general atomic surface modification strategy for improving anchoring and electrocatalysis behavior of Ti3C2T2 MXene in lithium-sulfur batteries, ACS Nano 13 (10) (2019) 11078-11086. [42] Y.P. Xiao, Y. Li, Z.L. Guo, C.C. Tang, B.S. Sa, N.H. Miao, J. Zhou, Z.M. Sun, Functionalized Mo2B2 MBenes: Promising anchoring and electrocatalysis materials for Lithium-Sulfur battery, Appl. Surf. Sci. 566 (2021) 150634. [43] G. Kresse, J. Furthmuller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B Condens. Matter 54 (16) (1996) 11169-11186. [44] G. Kresse, J. Furthmuller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci. 6 (1) (1996) 15-50. [45] G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59 (3) (1999) 1758-1775. [46] P.E. Blochl, Projector augmented-wave method, Phys Rev B Condens Matter 50 (24) (1994) 17953-17979. [47] J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (18) (1996) 3865-3868. [48] S. Grimme, J. Antony, S. Ehrlich, H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu, J. Chem. Phys. 132 (15) (2010) 154104. [49] G. Henkelman, B.P. Uberuaga, H. Jonsson, A climbing image nudged elastic band method for finding saddle points and minimum energy paths, J. Chem. Phys. 113 (22) (2000) 9901-9904. [50] G. Henkelman, H. Jonsson, Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points, J. Chem. Phys. 113 (22) (2000) 9978-9985. [51] R. Dronskowski, P.E. Bloechl, Crystal orbital Hamilton populations (COHP): Energy-resolved visualization of chemical bonding in solids based on density-functional calculations, J. Phys. Chem. 97 (33) (1993) 8617-8624. [52] V.L. Deringer, A.L. Tchougreeff, R. Dronskowski, Crystal orbital Hamilton population (COHP) analysis as projected from plane-wave basis sets, J. Phys. Chem. A 115 (21) (2011) 5461-5466. [53] S. Maintz, V.L. Deringer, A.L. Tchougreeff, R. Dronskowski, Analytic projection from plane-wave and PAW wavefunctions and application to chemical-bonding analysis in solids, J. Comput. Chem. 34 (29) (2013) 2557-2567. [54] S. Maintz, V.L. Deringer, A.L. Tchougreeff, R. Dronskowski, LOBSTER: A tool to extract chemical bonding from plane-wave based DFT, J. Comput. Chem. 37 (11) (2016) 1030-1035. [55] K. Momma, F. Izumi, VESTA 3for three-dimensional visualization of crystal, volumetric and morphology data, J. Appl. Crystallogr. 44 (6) (2011) 1272-1276. [56] V. Wang, N. Xu, J.C. Liu, G. Tang, W.T. Geng, VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code, Comput. Phys. Commun. 267 (2021) 108033. [57] Y.H. Wang, N.G. Ma, B.C. Liang, J. Fan, Exploring the potential of Ti2BT2 (T=F, Cl, Br, I, O, S, Se and Te) monolayers as anode materials for lithium and sodium ion batteries, Appl. Surf. Sci. 596 (2022) 153619. [58] I. Ozdemir, Y. Kadioglu, O. Uzengi Akturk, Y. Yuksel, U. Akinci, E. Akturk, A new single-layer structure of MBene family: Ti2B, J. Phys. Condens. Matter 31 (50) (2019) 505401. [59] L.L. Peng, Z.Y. Wei, C.Z. Wan, J. Li, Z. Chen, D. Zhu, D. Baumann, H.T. Liu, C.S. Allen, X. Xu, A.I. Kirkland, I. Shakir, Z. Almutairi, S. Tolbert, B. Dunn, Y. Huang, P. Sautet, X.F. Duan, A fundamental look at electrocatalytic sulfur reduction reaction, Nat. Catal. 3 (9) (2020) 762-770. [60] S. Feng, Z.H. Fu, X. Chen, B.Q. Li, H.J. Peng, N. Yao, X. Shen, L.G. Yu, Y.C. Gao, R. Zhang, Q. Zhang, An electrocatalytic model of the sulfur reduction reaction in lithium-sulfur batteries, Angew. Chem. Int. Ed. 61 (52) (2022) e202211448. [61] R. Jayan, M.M. Islam, Mechanistic insights into interactions of polysulfides at VS2 interfaces in Na-S batteries: A DFT study, ACS Appl. Mater. Interfaces 13 (30) (2021) 35848-35855. [62] M.S. Nahian, R. Jayan, M.M. Islam, Atomic-scale insights into comparative mechanisms and kinetics of Na-S and Li-S batteries, ACS Catal. 12 (13) (2022) 7664-7676. [63] Y.T. Wang, J.L. Shen, L.C. Xu, Z. Yang, R. Li, R.P. Liu, X.Y. Li, Sulfur-functionalized vanadium carbide MXene (V2CS2) as a promising anchoring material for lithium-sulfur batteries, Phys. Chem. Chem. Phys. 21 (34) (2019) 18559-18568. [64] L.J. Zhou, Z.F. Hou, L.M. Wu, First-principles study of lithium adsorption and diffusion on graphene with point defects, J. Phys. Chem. C 116 (41) (2012) 21780-21787. [65] Y.F. Li, D.H. Wu, Z. Zhou, C.R. Cabrera, Z.F. Chen, Enhanced Li adsorption and diffusion on MoS2 zigzag nanoribbons by edge effects: A computational study, J. Phys. Chem. Lett. 3 (16) (2012) 2221-2227. [66] Y. Xie, M. Naguib, V.N. Mochalin, M.W. Barsoum, Y. Gogotsi, X.Q. Yu, K.W. Nam, X.Q. Yang, A.I. Kolesnikov, P.R.C. Kent, Role of surface structure on Li-ion energy storage capacity of two-dimensional transition-metal carbides, J. Am. Chem. Soc. 136 (17) (2014) 6385-6394. |