[1] Y.Q. Sun, J.T. Shen, L. Yan, J.J. Zhou, L.L. Jiang, Y. Chen, J.L. Yuan, E.M. Feng, Z.L. Xiu, Advances in bioconversion of glycerol to 1,3-propanediol: Prospects and challenges, Process. Biochem. 71 (2018) 134-146. [2] S.Q. Xie, Z.X. Li, G.D. Zhu, W.L. Song, C.H. Yi, Cleaner production and downstream processing of bio-based 2, 3-butanediol: A review, J. Clean. Prod. 343 (2022) 131033. [3] R.K. Saxena, P. Anand, S. Saran, J. Isar, Microbial production of 1,3-propanediol: Recent developments and emerging opportunities, Biotechnol. Adv. 27 (6) (2009) 895-913. [4] F.H. Zhu, D.H. Liu, Z. Chen, Recent advances in biological production of 1,3-propanediol: New routes and engineering strategies, Green Chem. 24 (4) (2022) 1390-1403. [5] J.M. Park, C. Rathnasingh, H. Song, Metabolic engineering of Klebsiella pneumoniae based on in silico analysis and its pilot-scale application for 1,3-propanediol and 2,3-butanediol co-production, J. Ind. Microbiol. Biotechnol. 44 (3) (2017) 431-441. [6] M. Durgapal, V. Kumar, T.H. Yang, H.J. Lee, D. Seung, S. Park, Production of 1,3-propanediol from glycerol using the newly isolated Klebsiella pneumoniae J2B, Bioresour. Technol. 159 (2014) 223-231. [7] B.R. Oh, J.W. Seo, S.Y. Heo, W.K. Hong, L.H. Luo, S. Kim, D.H. Park, C.H. Kim, Optimization of culture conditions for 1,3-propanediol production from glycerol using a mutant strain of Klebsiella pneumoniae, Appl. Biochem. Biotechnol. 166 (1) (2012) 127-137. [8] Z.L. Xiu, A.P. Zeng, Present state and perspective of downstream processing of biologically produced 1,3-propanediol and 2,3-butanediol, Appl. Microbiol. Biotechnol. 78 (6) (2008) 917-926. [9] C.X. Cui, Z. Zhang, B.Q. Chen, Environmentally-friendly strategy for separation of 1,3-propanediol using biocatalytic conversion, Bioresour. Technol. 245 (Pt A) (2017) 477-482. [10] Z. Wang, Z. Wu, T.W. Tan, Studies on purification of 1,3-propanediol by molecular distillation, Biotechnol. Bioprocess Eng. 18 (4) (2013) 697-702. [11] J.M. Hong, N. Van Duc Long, G.R. Harvianto, J. Haider, M. Lee, Design and optimization of multi-effect-evaporation-assisted distillation configuration for recovery of 2,3-butanediol from fermentation broth, Chem. Eng. Process. Process. Intensif. 136 (2019) 107-115. [12] D. Wischral, H.X. Fu, F.L. Pellegrini Pessoa, N. Pereira, S.T. Yang, Effective and simple recovery of 1,3-propanediol from a fermented medium by liquid-liquid extraction system with ethanol and K3PO4, Chin. J. Chem. Eng. 26 (1) (2018) 104-108. [13] J.J. Malinowski, Reactive extraction for downstream separation of 1,3-propanediol, Biotechnol. Prog. 16 (1) (2000) 76-79. [14] N. Vivek, A. Pandey, P. Binod, An efficient aqueous two phase systems using dual inorganic electrolytes to separate 1,3-propanediol from the fermented broth, Bioresour. Technol. 254 (2018) 239-246. [15] Z. Wang, Z. Wu, T.W. Tan, Sorption equilibrium, mechanism and thermodynamics studies of 1,3-propanediol on beta zeolite from an aqueous solution, Bioresour. Technol. 145 (2013) 37-42. [16] G.F. Li, W.L. Liu, X. Wang, Q.P. Yuan, Separation of 2,3-butanediol using ZSM-5 zeolite modified with hydrophobic molecular spaces, Chem. Lett. 43 (4) (2014) 411-413. [17] S. Chen, G.F. Li, Q.P. Yuan, High adsorption capacity by creating a hydrophobic/hydrophilic layer on the surface of silicalite-1, RSC Adv. 6 (101) (2016) 99509-99513. [18] H. Jin, Y.S. Li, W.S. Yang, Adsorption of biomass-derived polyols onto metal-organic frameworks from aqueous solutions, Ind. Eng. Chem. Res. 57 (35) (2018) 11963-11969. [19] J.S. Zhang, J.L. Wu, M.Z. Gao, L.F. Ge, M.Y. Wang, J.X. Dong, Q. Shi, Introduction of hydrogen bond recognition sites in ZIF-71 for effective separation of bio-diols in aqueous solutions, AIChE. J. 70 (1) (2024) e18239. [20] P. Anand, R.K. Saxena, R.G. Marwah, A novel downstream process for 1,3-propanediol from glycerol-based fermentation, Appl. Microbiol. Biotechnol. 90 (4) (2011) 1267-1276. [21] S.Z. Wang, L.H. Qiu, H.F. Dai, X.F. Zeng, B.S. Fang, Highly pure 1, 3-propanediol: Separation and purification from crude glycerol-based fermentation, Eng. Life Sci. 15 (8) (2015) 788-796. [22] Y.Q. Peng, S.Z. Wang, L. Lan, W. Chen, B.S. Fang, Resin adsorption application for product separation and catalyst recycling in coupled enzymatic catalysis to produce 1,3-propanediol and dihydroxyacetone for repeated batch, Eng. Life Sci. 13 (5) (2013) 479-486. [23] B.X. Gao, M.H. Huang, Z.G. Zhang, Q.W. Yang, B.G. Su, Y.W. Yang, Q.L. Ren, Z.B. Bao, Hybridization of metal-organic framework and monodisperse spherical silica for chromatographic separation of xylene isomers, Chin. J. Chem. Eng. 27 (4) (2019) 818-826. [24] D.F. Lv, J.H. Xu, P.J. Zhou, S. Tu, F. Xu, J. Yan, H.X. Xi, Z.W. Liu, W.B. Yuan, Q. Fu, X. Chen, Q.B. Xia, Highly selective separation of propylene/propane mixture on cost-effectively four-carbon linkers based metal-organic frameworks, Chin. J. Chem. Eng. 51 (2022) 126-134. [25] Y.F. Su, X.K. Zhang, H. Li, D.L. Peng, Y.T. Zhang, In-situ incorporation of halloysite nanotubes with 2D zeolitic imidazolate framework-L based membrane for dye/salt separation, Chin. J. Chem. Eng. 58 (2023) 103-111. [26] Z.D. Ma, Y.X. Li, M.M. Jin, X.Q. Liu, L.B. Sun, Fabrication of adsorbents with enhanced CuI stability: Creating a superhydrophobic microenvironment through grafting octadecylamine, Chin. J. Chem. Eng. 55 (2023) 41-48. [27] J.J. Song, Q.Q. Meng, J. Wang, X.L. Guo, P. Wei, J.X. Dong, Q. Shi, Length exclusion separation of acetone/butanol using ZIF-302 derivatives with adjustable ellipsoidal cage sizes, Sep. Purif. Technol. 312 (2023) 123371. [28] Q. Shi, W.J. Xu, R.K. Huang, W.X. Zhang, Y. Li, P.F. Wang, F.N. Shi, L.B. Li, J.P. Li, J.X. Dong, Zeolite CAN and AFI-type zeolitic imidazolate frameworks with large 12-membered ring pore openings synthesized using bulky amides as structure-directing agents, J. Am. Chem. Soc. 138 (50) (2016) 16232-16235. [29] M.Z. Gao, R.K. Huang, B. Zheng, P.F. Wang, Q. Shi, W.X. Zhang, J.X. Dong, Large breathing effect in ZIF-65(Zn) with expansion and contraction of the SOD cage, Nat. Commun. 13 (1) (2022) 4569. [30] A. Phan, C.J. Doonan, F.J. Uribe-Romo, C.B. Knobler, M. O’Keeffe, O.M. Yaghi, Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks, Acc. Chem. Res. 43 (1) (2010) 58-67. [31] N.T.T. Nguyen, H. Furukawa, F. Gandara, H.T. Nguyen, K.E. Cordova, O.M. Yaghi, Selective capture of carbon dioxide under humid conditions by hydrophobic chabazite-type zeolitic imidazolate frameworks, Angew. Chem. Int. Ed. 53 (40) (2014) 10645-10648. [32] A.S. Ghanem, M. Ba-Shammakh, M. Usman, M.F. Khan, H. Dafallah, M.A. Habib, B.A. Al-Maythalony, High gas permselectivity in ZIF-302/polyimide self-consistent mixed-matrix membrane, J. Appl. Polym. Sci. 137 (13) (2020) 48513. [33] H.Q. Lian, E.Y. Song, B. Bao, W.H. Yang, Y. Yang, Y.C. Pan, S.G. Ju, Highly steam-stable CHA-type zeolite imidazole framework ZIF-302 membrane for hydrogen separation, Sep. Purif. Technol. 281 (2022) 119875. [34] M. Sarfraz, M. Ba-Shammakh, Synergistic effect of adding graphene oxide and ZIF-301 to polysulfone to develop high performance mixed matrix membranes for selective carbon dioxide separation from post combustion flue gas, J. Membr. Sci. 514 (2016) 35-43. [35] M. van Essen, R. Thur, M. Houben, I.F.J. Vankelecom, Z. Borneman, K. Nijmeijer, Tortuous mixed matrix membranes: A subtle balance between microporosity and compatibility, J. Membr. Sci. 635 (2021) 119517. [36] J.W. Yuan, H.P. Zhu, J.J. Sun, Y.Y. Mao, G.P. Liu, W.Q. Jin, Novel ZIF-300 mixed-matrix membranes for efficient CO2 capture, ACS Appl. Mater. Interfaces 9 (44) (2017) 38575-38583. [37] M. Sarfraz, M. Ba-Shammakh, Water-stable ZIF-300/Ultrason® mixed-matrix membranes for selective CO2 capture from humid post combustion flue gas, Chin. J. Chem. Eng. 26 (5) (2018) 1012-1021. [38] Dassault Systemes BIOVIA, Materials Studio Modeling Environment, Release 2017, Dassault Systemes BIOVIA, San Diego, CA, 2016. [39] B. Chen, J.J. Potoff, J.I. Siepmann, Monte Carlo calculations for alcohols and their mixtures with alkanes. Transferable potentials for phase equilibria. 5. United-atom description of primary, secondary, and tertiary alcohols, J. Phys. Chem. B 105 (15) (2001) 3093-3104. [40] J.M. Stubbs, J.J. Potoff, J. Ilja Siepmann, Transferable potentials for phase equilibria. 6. United-atom description for ethers, glycols, ketones, and aldehydes, J. Phys. Chem. B 108 (45) (2004) 17596-17605. [41] S.L. Mayo, B.D. Olafson, W.A. Goddard, DREIDING: A generic force field for molecular simulations, J. Phys. Chem. 94 (26) (1990) 8897-8909. [42] M.Z. Gao, J. Wang, Z.H. Rong, Q. Shi, J.X. Dong, A combined experimental-computational investigation on water adsorption in various ZIFs with the SOD and RHO topologies, RSC Adv. 8 (69) (2018) 39627-39634. |