[1] C. Migliorini, M. Mazzotti, M. Morbidelli, Continuous chromatographic separation through simulated moving beds under linear and nonlinear conditions, J. Chromatogr. A 827 (2) (1998) 161-173. [2] M. Minceva, A.E. Rodrigues, Modeling and simulation of a simulated moving bed for the separation of p-xylene, Ind. Eng. Chem. Res. 41 (14) (2002) 3454-3461. [3] M. Minceva, A.E. Rodrigues, Influence of the transfer line dead volume on the performance of an industrial scale simulated moving bed for p-xylene separation, Sep. Sci. Technol. 38 (7) (2003) 1463-1497. [4] P. Suvarov, J.W. Lee, A. Vande Wouwer, A. Seidel-Morgenstern, A. Kienle, Online estimation of optimal operating conditions for simulated moving bed chromatographic processes, J. Chromatogr. A 1602 (2019) 266-272. [5] J. Strube, U. Altenhoner, M. Meurer, H. Schmidt-Traub, M. Schulte, Dynamic simulation of simulated moving-bed chromatographic processes for the optimization of chiral separations, J. Chromatogr. A 769 (1) (1997) 81-92. [6] M, Minceva, A.E. Rodrigues, Two-level optimization of an existing SMB for p-xylene separation, Comput. Chem. Eng., 29(10) 2005 2215-2228. [7] C.Y. Yao, Z.W. Zheng, K. Chen, L.W. Wei, L. Shen, Y.H. Lu, E.G. Fan, Using a machine learning model for the optimal design of simulated moving bed processes and its application to separate rebaudioside A and stevioside, J. Chem. Technol. Biotechnol. 96 (9) (2021) 2558-2568. [8] W.S. Lee, C.H. Lee, Dynamic modeling and machine learning of commercial-scale simulated moving bed chromatography for application to multi-component normal paraffin separation, Sep. Purif. Technol. 288 (2022) 120597. [9] I.B.R. Nogueira, A.M. Ribeiro, R. Requiao, K.V. Pontes, H. Koivisto, A.E. Rodrigues, J.M. Loureiro, A quasi-virtual online analyser based on an artificial neural networks and offline measurements to predict purities of raffinate/extract in simulated moving bed processes, Appl. Soft Comput. 67 (2018) 29-47. [10] C.Y. Wang, K.U. Klatt, G. Dunnebier, S. Engell, F. Hanisch, Neural network-based identification of SMB chromatographic processes, Contr. Eng. Pract. 11 (8) (2003) 949-959. [11] P. Suvarov, A. Kienle, C. Nobre, G. De Weireld, A. Vande Wouwer, Cycle to cycle adaptive control of simulated moving bed chromatographic separation processes, J. Process. Contr. 24 (2) (2014) 357-367. [12] Z.W. Zhang, P. Cui, W.W. Zhu, Deep learning on graphs: a survey, IEEE Trans. Knowl. Data Eng. 34 (1) (2022) 249-270. [13] Z.H. Wu, S.R. Pan, F.W. Chen, G.D. Long, C.Q. Zhang, P.S. Yu, A comprehensive survey on graph neural networks, IEEE Trans. Neural Netw. Learn. Syst. 32 (1) (2021) 4-24. [14] Z.W. Wang, M. Xia, M. Lu, L.L. Pan, J. Liu, Parameter identification in power transmission systems based on graph convolution network, IEEE Trans. Power Deliv. 37 (4) (2022) 3155-3163. [15] Y. Ding, Z.L. Zhang, X.F. Zhao, D.F. Hong, W. Cai, C.G. Yu, N.J. Yang, W.W. Cai, Multi-feature fusion: Graph neural network and CNN combining for hyperspectral image classification, Neurocomputing 501 (2022) 246-257. [16] L. Zhao, Y.J. Song, C. Zhang, Y. Liu, P. Wang, T. Lin, M. Deng, H.F. Li, T-GCN: a temporal graph convolutional network for traffic prediction, IEEE Trans. Intell. Transp. Syst. 21 (9) (2020) 3848-3858. [17] Y. Huang, C. Zhang, J. Yella, S. Petrov, X.Y. Qian, Y.F. Tang, X.Q. Zhu, S. Bom, GraSSNet: graph soft sensing neural networks, 2021 IEEE International Conference on Big Data (Big Data). Orlando, FL, USA. IEEE, (2021) 746-756. [18] M.W. Jia, Y. Dai, D.Y. Xu, T. Yang, Y. Yao, Y. Liu, Deep graph network for process soft sensor development, 2021 8th International Conference on Information, Cybernetics, and Computational Social Systems (ICCSS). Beijing, China. IEEE, (2021) 1-6. [19] Y.H. Wang, P.F. Yan, M.H. Gai, Dynamic soft sensor for anaerobic digestion of kitchen waste based on SGSTGAT, IEEE Sens. J. 21 (17) (2021) 19198-19208. [20] K. Zhu, C.H. Zhao, Dynamic graph-based adaptive learning for online industrial soft sensor with mutable spatial coupling relations, IEEE Trans. Ind. Electron. 70 (9) (2023) 9614-9622. [21] J.X. Ye, J.J. Zhao, K.J. Ye, C.Z. Xu, Multi-graph convolutional network for relationship-driven stock movement prediction, 2020 25th International Conference on Pattern Recognition (ICPR). Milan, Italy. IEEE, (2021) 6702-6709. [22] Z. Al Ani, A.M. Gujarathi, A.H. Al-Muhtaseb, A state of art review on applications of multi-objective evolutionary algorithms in chemicals production reactors, Artif. Intell. Rev. 56 (3) (2023) 2435-2496. [23] Z.Q. Wang, L. Wang, Z.H. Yuan, B.Z. Chen, Data-driven optimal operation of the industrial methanol to olefin process based on relevance vector machine, Chin. J. Chem. Eng. 34 (2021) 106-115. [24] M.L. Yang, R. Hu, J. Long, Y.J. Lv, Z.C. Ye, Z. Li, W.M. Zhong, Modeling and optimization of simulated moving bed for Paraxylene Purification, Pet. Chem. 61 (2) (2021) 214-219. [25] L. Huang, L. Sun, N. Wang, X.M. Jin, Multiobjective optimization of simulated moving bed by tissue P system, Chin. J. Chem. Eng. 15 (5) (2007) 683-690. [26] W.W. Jiang, J.Y. Luo, Graph neural network for traffic forecasting: a survey, Expert Syst. Appl. 207 (2022) 117921. [27] T. Nguyen, G.T.T. Nguyen, T. Nguyen, D.H. Le, Graph convolutional networks for drug response prediction, IEEE/ACM Trans. Comput. Biol. Bioinform. 19 (1) (2022) 146-154. [28] F.M. Bianchi, D. Grattarola, L. Livi, C. Alippi, Graph neural networks with convolutional ARMA filters, IEEE Trans. Pattern Anal. Mach. Intell. 44 (7) (2022) 3496-3507. [29] R. Levie, F. Monti, X. Bresson, M.M. Bronstein, CayleyNets: graph convolutional neural networks with complex rational spectral filters, IEEE Trans. Signal Process. 67 (1) (2019) 97-109. [30] M.Y. Dai, M.F. Demirel, Y.Y. Liang, J.M. Hu, Graph neural networks for an accurate and interpretable prediction of the properties of polycrystalline materials, NPJ Comput. Mater. 7 (2021) 103. [31] P. Sa Gomes, A.E. Rodrigues, Simulated moving bed chromatography: from concept to proof-of-concept, Chem. Eng. Technol. 35 (1) (2012) 17-34. [32] P.P. Li, H.J. Hao, Z. Zhang, X.G. Mao, J.J. Xu, Y.T. Lv, W.M. Chen, D.B. Ge, A field study to estimate heavy metal concentrations in a soil-rice system: Application of graph neural networks, Sci. Total Environ. 832 (2022) 155099. [33] V.M. Ribeiro, G. Soutinho, I. Soares, Natural gas prices in the framework of European union’s energy transition: assessing evolution and drivers, Energies 16 (4) (2023) 2029. [34] Y.H. Chen, R. Preece, M. Barnes, Identifying feasibility region boundaries in power systems with multiple VSCs, IEEE Trans. Power Syst. 38 (2) (2023) 1229-1241. [35] S. Conti, V. Ovchinnikov, M. Karplus, Ppdx: Automated modeling of protein-protein interaction descriptors for use with machine learning, J. Comput. Chem. 43 (25) (2022) 1747-1757. [36] Z. Tariq, A. BinGhanim, M.S. Aljawad, M.S. Kamal, M. Mahmoud, Z. AlYousef, AI-driven foam rheological model based on HPHT foam rheometer experiments, J. Petrol. Sci. Eng. 213 (2022) 110439. [37] P. Schober, C. Boer, L.A. Schwarte, Correlation coefficients: appropriate use and interpretation, Anesth. Analg. 126 (5) (2018) 1763-1768. [38] K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Trans. Evol. Comput. 6 (2) (2002) 182-197. [39] Z.Q. Ge, Z.H. Song, F.R. Gao, Review of recent research on data-based process monitoring, Ind. Eng. Chem. Res. 52 (10) (2013) 3543-3562. [40] Y. Tian, W.L. Du, F. Qian, Fault detection and diagnosis for non-Gaussian processes with periodic disturbance based on AMRA-ICA, Ind. Eng. Chem. Res. 52 (34) (2013) 12082-12107. [41] Z. Li, Y.H. Ying, M.L. Yang, L. Zhao, L. Zhao, W.L. Du, Monitoring and path optimization of catalytic reformer in a refinery: Principal component analysis and A* algorithm application, Expert Syst. Appl. 209 (2022) 118358. |