[1] X.K. Li, J.R. Han, Y. Liu, Z.H. Dou, T.A. Zhang, Summary of research progress on industrial flue gas desulfurization technology, Sep. Purif. Technol. 281 (2022) 119849. [2] T.F. Zhang, Q. Tang, C. Pu, L. Zhang, Numerical simulation of gas-droplets mixing and spray evaporation in rotary spray desulfurization tower, Adv. Powder Technol. 33 (2) (2022) 103420. [3] G. Cheng, C.X. Zhang, Desulfurization and denitrification technologies of coal fired flue gas, Pol. J. Environ. Stud. 27 (2) (2018) 481-489. [4] T. Nakazato, Y.Y. Liu, K. Kato, Removal of SO2 in semi-dry flue gas desulfurization process with a powder-particle spouted bed, Can. J. Chem. Eng. 82 (2008) 110-115. [5] Q.M. Guo, I. Noriaki, K. Kato, Process development of effective semi-dry flue gas desulfurization by powder-particle spouted bed, Kagaku Kogaku Ronbunshu 22 (6) (1996) 1400-1407. [6] X. Ma, T. Kaneko, G. Xu, K. Kato, Influence of gas components on removal of SO2 from flue gas in the semidry FGD process with a powder-particle spouted bed, Fuel 80 (5) (2001) 673-680. [7] X.X. Ma, T. Kaneko, T. Tashimo, T. Yoshida, K. Kato, Use of limestone for SO2 removal from flue gas in the semidry FGD process with a powder-particle spouted bed, Chem. Eng. Sci. 55 (20) (2000) 4643-4652. [8] X. Wang, Y.J. Li, W. Zhang, J.L. Zhao, Z.Y. Wang, Simultaneous SO2 and NO removal by pellets made of carbide slag and coal char in a bubbling fluidized-bed reactor, Process. Saf. Environ. Prot. 134 (2020) 83-94. [9] Y. Zhao, P.Y. Xu, X.J. Sun, L.D. Wang, Experimental and mechanism studies on simultaneous desulfurization and denitrification from flue gas using a flue gas circulating fluidized bed, Sci. China Ser. B Chem. 50 (1) (2007) 135-144. [10] Z.H. Meng, C.Y. Wang, X.R. Wang, Y. Chen, H.Q. Li, Simultaneous removal of SO2 and NOx from coal-fired flue gas using steel slag slurry, Energy Fuels 32 (2) (2018) 2028-2036. [11] J.E. Jeong, I.A. Cho, C.Y. Lee, Desulfurization characteristics of limestone slurry with added organic acid, Fuel 336 (2023) 126859. [12] D. Xie, C.F. You, Q.X. Liu, Experimental study on in situ preparation of supported sorbent for moderate temperature CFB-FGD, Energy Fuels 32 (3) (2018) 3690-3696. [13] M.I. Ortiz, A. Garea, A. Irabien, F. Cortabitarte, Flue gas desulfurization at low temperatures. Characterization of the structural changes in the solid sorbent, Powder Technol. 75 (2) (1993) 167-172. [14] Y.P. Fan, C. Li, H.W. Fan, M. Yu, C.X. Lu, Core-annulus radial solids concentration distribution in riser, Chem. Eng. Sci. 192 (2018) 318-334. [15] M. Nikku, A. Daikeler, A. Stroh, K. Myohanen, Comparison of solid phase closure models in Eulerian-Eulerian simulations of a circulating fluidized bed riser, Chem. Eng. Sci. 195 (2019) 39-50. [16] P. Ostermeier, S. DeYoung, A. Vandersickel, S. Gleis, H. Spliethoff, Comprehensive investigation and comparison of TFM, DenseDPM and CFD-DEM for dense fluidized beds, Chem. Eng. Sci. 196 (2019) 291-309. [17] L. Lerotholi, R.C. Everson, L. Koech, H.W.J.P. Neomagus, H.L. Rutto, D. Branken, B.B. Hattingh, P. Sukdeo, Semi-dry flue gas desulphurization in spray towers: A critical review of applicable models for computational fluid dynamics analysis, Clean Technol. Environ. Policy 24 (7) (2022) 2011-2060. [18] C.Y. Chu, S.J. Hwang, Flue gas desulfurization in an internally circulating fluidized bed reactor, Powder Technol. 154 (1) (2005) 14-23. [19] Q. Tang, Q. Wang, P.F. Cui, W.W. Cao, S.F. Hou, Numerical simulation of flue gas desulfurization characteristics in CFB with bypass ducts, Process. Saf. Environ. Prot. 91 (5) (2013) 386-390. [20] X.W. Hao, C.Y. Ma, Y. Dong, J.G. Yang, Composite fluidization in a circulating fluidized bed for flue gas desulfurization, Powder Technol. 215 (2012) 46-53. [21] G.P. Wu, Y. He, L. Luo, W. Chen, Dynamic characterizations of gas-solid flow in a novel multistage fluidized bed via nonlinear analyses, Chem. Eng. J. 359 (2019) 1013-1023. [22] G.P. Wu, W. Chen, Y. He, Investigation on gas-solid flow behavior in a multistage fluidized bed by using numerical simulation, Powder Technol. 364 (2020) 251-263. [23] J.L. Du, K. Yue, F. Wu, X.X. Ma, Z.Q. Hui, Numerical investigation on the water vaporization during semi dry flue gas desulfurization in a three-dimensional spouted bed, Powder Technol. 383 (2021) 471-483. [24] M.M. Hong, G.L. Xu, P. Lu, F.H. Chen, G.W. Sheng, Q. Zhang, Numerical simulation on gas-droplet flow characteristics and spray evaporation process in CFB-FGD tower, Adv. Powder Technol. 34 (5) (2023) 104008. [25] S. Wang, F. Wu, B.B. Di, Y. Yan, Y.C. Tang, Intensification effect of a multi-jet structure on a multiphase flow and desulfurization process in a fluidized bed, ACS Omega 8 (6) (2023) 5861-5876. [26] L.T. Fan, F.L. Wang, H.R. Li, D.K. He, Modeling of a circulating fluidized bed for flue gas desulfurization process, 2010 Chinese Control and Decision Conference. Xuzhou, IEEE, 2010, pp. 2444-2448. [27] P. Liu, X. Wu, Z.Y. Wang, Y.X. Bo, H.R. Bao, Numerical simulation study on gas-solid flow characteristics and SO2 removal characteristics in circulating fluidized bed desulfurization tower, Chem. Eng. Process. Process. Intensif. 176 (2022) 108974. [28] X. Wang, Y.J. Li, T.Y. Zhu, P.F. Jing, J.S. Wang, Simulation of the heterogeneous semi-dry flue gas desulfurization in a pilot CFB riser using the two-fluid model, Chem. Eng. J. 264 (2015) 479-486. [29] Y. Yan, X.F. Peng, B.X. Wang, Investigation on the transport process of flue gas desulfurization in a circulating fluidized bed, Int. Commun. Heat Mass Transf. 30 (1) (2003) 71-82. [30] L. Cai, Z.Y. Xu, X.R. Wang, H.C. Bai, L.C. Han, Y.F. Zhou, Numerical simulation and optimization of semi-dry flue gas desulfurization in a CFB based on the two-film theory using response surface methodology, Powder Technol. 401 (2022) 117268. [31] X.L. Huang, X.L. Jin, L.X. Dong, R.Y. Li, K.X. Yang, Y.H. Li, L. Deng, D.F. Che, CPFD numerical study on tri-combustion characteristics of coal, biomass and oil sludge in a circulating fluidized bed boiler, J. Energy Inst. 113 (2024) 101550. [32] B.H. Lee, Y.H. Bae, K.M. Kim, Y. Jiang, Y.H. Ahn, C.H. Jeon, Application of the CPFD method to analyze the effects of bed material density on gas-particle hydrodynamics and wall erosion in a CFB boiler, Fuel 342 (2023) 127878. [33] J. Chang, X.R. Ma, X. Wang, X.H. Li, CPFD modeling of hydrodynamics, combustion and NOx emissions in an industrial CFB boiler, Particuology 81 (2023) 174-188. [34] J.R. Grace, Contacting modes and behaviour classification of gas-solid and other two-phase suspensions, Can. J. Chem. Eng. 64 (3) (1986) 353-363. [35] M. Tao, B.S. Jin, W.Q. Zhong, Y.P. Yang, R. Xiao, Modeling and experimental study on multi-level humidifying of the underfeed circulating spouted bed for flue gas desulfurization, Powder Technol. 198 (1) (2010) 93-100. [36] F. Ruhland, R. Kind, S. Weiss, The kinetics of the absorption of sulfur dioxide in calcium hydroxide suspensions, Chem. Eng. Sci. 46 (4) (1991) 939-947. [37] J. Klingspor, A.M. Stromberg, H.T. Karlsson, I. Bjerle, Similarities between lime and limestone in wet-dry scrubbing, Chem. Eng. Process. Process. Intensif. 18 (5) (1984) 239-247. [38] J.Y. Qu, N.N. Qi, Z. Li, K. Zhang, P.C. Wang, L.F. Li, Mass transfer process intensification for SO2 absorption in a commercial-scale wet flue gas desulfurization scrubber, Chem. Eng. Process. Process. Intensif. 166 (2021) 108478. [39] E.N. Fuller, P.D. Schettler, J.C. Giddings, New method for prediction of binary gas-phase diffusion coefficients, Ind. Eng. Chem. 58 (5) (1966) 18-27. [40] C.T. Hsu, S.M. Shih, Semiempirical equation for liquid-phase mass-transfer coefficient for drops, AIChE. J. 39 (6) (1993) 1090-1092. [41] G.H. Newton, J. Kramlich, R. Payne, Modeling the SO2-slurry droplet reaction, AIChE. J. 36 (12) (1990) 1865-1872. [42] H.P. Liu, J.W. Li, Q. Wang, Simulation of gas-solid flow characteristics in a circulating fluidized bed based on a computational particle fluid dynamics model, Powder Technol. 321 (2017) 132-142. [43] Y.G. Zhou, J. Peng, X. Zhu, M.C. Zhang, Hydrodynamics of gas-solid flow in the circulating fluidized bed reactor for dry flue gas desulfurization, Powder Technol. 205 (1-3) (2011) 208-216. |