[1] M.T. Kartal, The role of consumption of energy, fossil sources, nuclear energy, and renewable energy on environmental degradation in top-five carbon producing countries, Renew. Energy 184 (2022) 871-880. [2] K. Yan, Y.Y. Yang, J.J. Chai, Y.R. Lu, Catalytic reactions of gamma-valerolactone: A platform to fuels and value-added chemicals, Appl. Catal. B Environ. 179 (2015) 292-304. [3] S. Chen, R. Wojcieszak, F. Dumeignil, E. Marceau, S. Royer, How catalysts and experimental conditions determine the selective hydroconversion of furfural and 5-hydroxymethylfurfural, Chem. Rev. 118 (22) (2018) 11023-11117. [4] J.B. Ocreto, W.H. Chen, A.P. Rollon, H.C. Ong, A. Petrissans, M. Petrissans, M.D.G. De Luna, Ionic liquid dissolution utilized for biomass conversion into biofuels, value-added chemicals and advanced materials: A comprehensive review, Chem. Eng. J. 445 (2022) 136733. [5] J. He, Q. Qiang, S.M. Liu, K. Song, X.W. Zhou, J. Guo, B. Zhang, C.Z. Li, Upgrading of biomass-derived furanic compounds into high-quality fuels involving aldol condensation strategy, Fuel 306 (2021) 121765. [6] A. Garcia, R. Sanchez-Tovar, P.J. Miguel, E. Montejano-Nares, F. Ivars-Barcelo, J.A. Cecilia, B. Torres-Olea, B. Solsona, Catalytic production of γ-valerolactone, a biofuel precursor, from furfural in one-pot: Synergistic effect between Zr and Sn, Fuel 352 (2023) 129045. [7] H. Yang, H. Chen, W.H. Zhou, H.A. Fan, C. Chen, J. Li, B.L. Li, J.H. Wang, J. Fu, Defect engineered efficient catalytic transfer hydrogenation of furfural to furfuryl alcohol in ethanol by Co-doped LaMnO3, Fuel 354 (2023) 129388. [8] M. Sankar, N. Dimitratos, P.J. Miedziak, P.P. Wells, C.J. Kiely, G.J. Hutchings, Designing bimetallic catalysts for a green and sustainable future, Chem. Soc. Rev. 41 (24) (2012) 8099-8139. [9] Z.D. An, J. Li, Recent advances in the catalytic transfer hydrogenation of furfural to furfuryl alcohol over heterogeneous catalysts, Green Chem. 24 (5) (2022) 1780-1808. [10] R. Mariscal, P. Maireles-Torres, M. Ojeda, I. Sadaba, M. Lopez Granados, Furfural: A renewable and versatile platform molecule for the synthesis of chemicals and fuels, Energy Environ. Sci. 9 (4) (2016) 1144-1189. [11] S. Thongratkaew, S. Kiatphuengporn, A. Junkaew, S. Kuboon, N. Chanlek, A. Seubsai, B. Rungtaweevoranit, K. Faungnawakij, Solvent effects in integrated reaction-separation process of liquid-phase hydrogenation of furfural to furfuryl alcohol over CuAl2O4 catalysts, Catal. Commun. 169 (2022) 106468. [12] M.J. Taylor, L.J. Durndell, M.A. Isaacs, C.M.A. Parlett, K. Wilson, A.F. Lee, G. Kyriakou, Highly selective hydrogenation of furfural over supported Pt nanoparticles under mild conditions, Appl. Catal. B Environ. 180 (2016) 580-585. [13] Q.M. Hou, J.X. Cai, L. Zuo, H. Chen, Y.C. Fu, J.Y. Shen, Selective hydrogenation of furfural over supported nickel and nickel phosphide catalysts, Appl. Surf. Sci. 619 (2023) 156738. [14] S. Campisi, C.E. Chan-Thaw, L.E. Chinchilla, A. Chutia, G.A. Botton, K.M.H. Mohammed, N. Dimitratos, P.P. Wells, A. Villa, Dual-site-mediated hydrogenation catalysis on Pd/NiO: Selective biomass transformation and maintenance of catalytic activity at low Pd loading, ACS Catal. 10 (10) (2020) 5483-5492. [15] A. Mandalika, L. Qin, T.K. Sato, T. Runge, Integrated biorefinery model based on production of furans using open-ended high yield processes, Green Chem. 16 (5) (2014) 2480-2489. [16] X.Q. Yan, G.Y. Zhang, Q.Q. Zhu, X.J. Kong, CuZn@N-doped graphene layer for upgrading of furfural to furfuryl alcohol, Mol. Catal. 517 (2022) 112066. [17] H.B. Zhang, C. Canlas, A. Jeremy Kropf, J.W. Elam, J.A. Dumesic, C.L. Marshall, Enhancing the stability of copper chromite catalysts for the selective hydrogenation of furfural with ALD overcoating (II)-Comparison between TiO2 and Al2O3 overcoatings, J. Catal. 326 (2015) 172-181. [18] M. Pirmoradi, J.R. Kastner, A kinetic model of multi-step furfural hydrogenation over a Pd-TiO2 supported activated carbon catalyst, Chem. Eng. J. 414 (2021) 128693. [19] J.W. Medlin, Understanding and controlling reactivity of unsaturated oxygenates and polyols on metal catalysts, ACS Catal. 1 (10) (2011) 1284-1297. [20] K. Xiong, W.M. Wan, J.G. Chen, Reaction pathways of furfural, furfuryl alcohol and 2-methylfuran on Cu(111) and NiCu bimetallic surfaces, Surf. Sci. 652 (2016) 91-97. [21] Y. Shi, Y.L. Zhu, Y. Yang, Y.W. Li, H.J. Jiao, Exploring furfural catalytic conversion on Cu(111) from computation, ACS Catal. 5 (7) (2015) 4020-4032. [22] J.Y. Zhang, Z. Jia, S.T. Yu, S.W. Liu, L. Li, C.X. Xie, Q. Wu, Y.Z. Zhang, H.L. Yu, Y.X. Liu, J.H. Pang, Y. Liu, Regulating the Cu0-Cu+ ratio to enhance metal-support interaction for selective hydrogenation of furfural under mild conditions, Chem. Eng. J. 468 (2023) 143755. [23] Q.N. Wang, R.Z. Duan, Z.D. Feng, Y. Zhang, P. Luan, Z.C. Feng, J.J. Wang, C. Li, Understanding the synergistic catalysis in hydrogenation of carbonyl groups on Cu-based catalysts, ACS Catal. 14 (3) (2024) 1620-1628. [24] H. Zhao, X.Q. Liao, H.S. Cui, M.C. Zhu, F. Hao, W. Xiong, H.A. Luo, Y. Lv, P.L. Liu, Efficient Cu-Co bimetallic catalysts for the selective hydrogenation of furfural to furfuryl alcohol, Fuel 351 (2023) 128887. [25] W.J. Yi, Y.Z. Gao, J.Y. Yang, X.T. Zhou, Z.Y. Liu, M. Zhang, Synergistic effect of surface Cu0 and Cu+ species over hydrotalcite-derived CuxCo3-xAlOy mixed-metal oxides toward efficient hydrogenation of furfural to furfuryl alcohol, Appl. Surf. Sci. 641 (2023) 158559. [26] S. Chen, P.M. de Souza, C. Ciotonea, M. Marinova, F. Dumeignil, S. Royer, R. Wojcieszak, Micro-/ mesopores confined ultrasmall Cu nanoparticles in SBA-15 as a highly efficient and robust catalyst for furfural hydrogenation to furfuryl alcohol, Appl. Catal. A Gen. 633 (2022) 118527. [27] L. Zhao, J.N. Duan, Q.L. Zhang, Y. Li, K.G. Fang, Preparation, structural characteristics, and catalytic performance of Cu-co alloy supported on Mn-Al oxide for higher alcohol synthesis via syngas, Ind. Eng. Chem. Res. 57 (44) (2018) 14957-14966. [28] J. Lee, J. Woo, C. Nguyen-Huy, M.S. Lee, S.H. Joo, K. An, Highly dispersed Pd catalysts supported on various carbons for furfural hydrogenation, Catal. Today 350 (2020) 71-79. [29] H. Yang, H. Chen, W.H. Zhou, H.A. Fan, C. Chen, Y.X. Sun, J.J. Zhang, S.F. Wang, T. Guo, J. Fu, Construction of N, O Co-doped carbon anchored with Co nanoparticles as efficient catalyst for furfural hydrodeoxygenation in ethanol, J. Energy Chem. 78 (2023) 195-202. [30] L.L. Rao, R. Ma, S.F. Liu, L.L. Wang, Z.Z. Wu, J. Yang, X. Hu, Nitrogen enriched porous carbons from d-glucose with excellent CO2 capture performance, Chem. Eng. J. 362 (2019) 794-801. [31] J.L. Gong, H.R. Yue, Y.J. Zhao, S. Zhao, L. Zhao, J. Lv, S.P. Wang, X.B. Ma, Synthesis of ethanol via syngas on Cu/SiO2 catalysts with balanced Cu0-Cu+ sites, J. Am. Chem. Soc. 134 (34) (2012) 13922-13925. [32] Z.P. Zhao, X.Y. Long, M. Millan, G.M. Yuan, Z.W. Cui, Z.J. Dong, Y. Cong, J. Zhang, X.K. Li, The influence of carbon supports and their surface modification on aqueous phase highly selective hydrogenation of phenol to cyclohexanol over different Ni/carbon catalysts, Carbon 213 (2023) 118227. [33] G.L. Liu, T. Niu, D.M. Pan, F. Liu, Y. Liu, Preparation of bimetal Cu-Co nanoparticles supported on meso-macroporous SiO2 and their application to higher alcohols synthesis from syngas, Appl. Catal. A Gen. 483 (2014) 10-18. [34] K. Xiao, X.Z. Qi, Z.H. Bao, X.X. Wang, L.S. Zhong, K.G. Fang, M.G. Lin, Y.H. Sun, CuFe, CuCo and CuNi nanoparticles as catalysts for higher alcohol synthesis from syngas: A comparative study, Catal. Sci. Technol. 3 (6) (2013) 1591-1602. [35] W. Sun, S. Wu, Y. Lu, Y. Wang, Q. Cao, W. Fang, Effective Control of Particle Size and Electron Density of Pd/C and Sn-Pd/C Nanocatalysts for Vanillin Production via Base-Free Oxidation, ACS. Catal. 10(14) (2020) 7699-7709. [36] Y.Q. Yao, X.Q. Wu, O.Y. Gutierrez, J. Ji, P. Jin, S.N. Wang, Y. Xu, Y.J. Zhao, S.P. Wang, X.B. Ma, J.A. Lercher, Roles of Cu+ and Cu0 sites in liquid-phase hydrogenation of esters on core-shell CuZnx@C catalysts, Appl. Catal. B Environ. 267 (2020) 118698. [37] W.T. Fang, S.H. Liu, A.K. Steffensen, L. Schill, G. Kastlunger, A. Riisager, On the role of Cu+ and CuNi alloy phases in mesoporous CuNi catalyst for furfural hydrogenation, ACS Catal. 13 (13) (2023) 8437-8444. [38] B.B. Gao, J. Zhang, J.H. Yang, Bimetallic Cu-Ni/MCM-41 catalyst for efficiently selective transfer hydrogenation of furfural into furfural alcohol, Mol. Catal. 517 (2022) 112065. [39] S.J. Li, Y.F. Fan, C.H. Wu, C.F. Zhuang, Y. Wang, X.M. Li, J. Zhao, Z.F. Zheng, Selective hydrogenation of furfural over the co-based catalyst: A subtle synergy with Ni and Zn dopants, ACS Appl. Mater. Interfaces 13 (7) (2021) 8507-8517. |