[1] J.R. Chi, B. Wang, H. Zhang, J.J. Kang, T.F. Lu, Y.P. Huang, W. Yang, H.Y. Zhang, L.S. Sun, Regional coal power overcapacity assessment in China from 2020 to 2025, J. Clean. Prod. 303 (2021) 127020. [2] X.P. Wang, Z.M. Zhang, Z.H. Guo, C. Su, L.H. Sun, Energy structure transformation in the context of carbon neutralization: Evolutionary game analysis based on inclusive development of coal and clean energy, J. Clean. Prod. 398 (2023) 136626. [3] L. Wang, Y.W. Sun, S.W. Zheng, L.Y. Shu, X.L. Zhang, How efficient coal mine methane control can benefit carbon-neutral target: Evidence from China, J. Clean. Prod. 424 (2023) 138895. [4] K. Su, Z.Q. Ouyang, W.Y. Wang, H.L. Ding, J.Y. Zhang, C.M. Wei, H.S. Wang, S.J. Zhu, Experimental study on effects of premixed air distribution on preheating combustion characteristics and NOx emission of pulverized coal, Fuel 344 (2023) 128076. [5] S. Yadav, S.S. Mondal, Numerical investigation of the influence of operating parameters on NOx emission characteristics under oxy-coal combustion atmosphere in a tubular combustor, Int. Commun. Heat Mass Transf. 119 (2020) 104915. [6] H.L. Ding, Z.Q. Ouyang, X.Y. Zhang, S.J. Zhu, The effects of particle size on flameless combustion characteristics and NO emissions of semi-coke with coal preheating technology, Fuel 297 (2021) 120758. [7] M.X. Xu, S.Y. Li, Experimental study on N2O emission in O2/CO2 combustion with high oxygen concentration in circulating fluidized bed, J. Energy Inst. 92 (1) (2019) 128-135. [8] Y. Xie, J.W. Yan, J. Li, C.Q. Zhang, X. Liu, W.Z. Zhang, H.Y. Wang, Experimental study on the effects of ammonia cofiring ratio and injection mode on the NOx emission characteristics of ammonia-coal cofiring, Fuel 363 (2024) 130996. [9] J.X. Shen, F.S. Li, Z.H. Li, H.G. Wang, Y.C. Shen, Z.W. Liu, Numerical investigation of air-staged combustion to reduce NOX emissions from biodiesel combustion in industrial furnaces, J. Energy Inst. 92 (3) (2019) 704-716. [10] R.L. Dong, J.H. Zhou, W.J. Yang, Z.J. Zhou, Z.M. Lu, K.F. Cen, Experimental study on effects of pulverized coal staging on in-furnace combustion process, J. Zhejiang Univ. Eng. Sci. 39 (12) (2005) 1907-1910. [11] S.H. Yoon, S.J. Kim, G.U. Baek, J.H. Moon, S.H. Jo, S.J. Park, J.Y. Kim, S.J. Yoon, H.W. Ra, S.M. Yoon, J.G. Lee, J.S. Kim, T.Y. Mun, Operational optimization of air staging and flue gas recirculation for NOx reduction in biomass circulating fluidized bed combustion, J. Clean. Prod. 387 (2023) 135878. [12] Z.Q. Ouyang, J.G. Zhu, Q.G. Lu, Experimental study on preheating and combustion characteristics of pulverized anthracite coal, Fuel 113 (2013) 122-127. [13] Y.H. Liu, J.Z. Liu, Q.G. Lyu, J.G. Zhu, F. Pan, Microstructure analysis of fluidized preheating pulverized coal under O2/CO2 atmospheres, Fuel 292 (2021) 120386. [14] G.J. Yao, X.J. Han, Z.D. Liu, H. Tang, Y.Q. Zhou, Z. Wang, Low-NOx study of a 600MW tangentially fired boiler based on pulverized coal preheating method, Case Stud. Therm. Eng. 48 (2023) 103156. [15] G.Q. Zhu, S. Wang, Y. Yu, L. Xu, Y.Q. Niu, Experimental and numerical evaluation of coal-N conversion characteristic during preheating-combustion under O2/CO2 atmosphere, Fuel 360 (2024) 130199. [16] X.H. Xiong, Z.M. Lv, S.L. Yu, H.Z. Tan, B.X. Xiang, J. Huang, Coke preheating combustion study on NOx and SO2 emission, J. Energy Inst. 97 (2021) 131-137. [17] C.C. Liu, S.E. Hui, X.L. Zhang, D.H. Wang, H.Y. Zhuang, X.Y. Wang, Influence of type of burner on NO emissions for pulverized coal preheating method, Appl. Therm. Eng. 85 (2015) 278-286. [18] G.L. Song, S.B. Yang, W.J. Song, X.B. Qi, Release and transformation behaviors of sodium during combustion of high alkali residual carbon, Appl. Therm. Eng. 122 (2017) 285-296. [19] Z.M. Lv, X.H. Xiong, S.L. Yu, H.Z. Tan, B.X. Xiang, J. Huang, J.H. Peng, P. Li, Experimental investigation on NO emission of semi-coke under high temperature preheating combustion technology, Fuel 283 (2021) 119293. [20] J.H. Zhang, J.G. Zhu, J.Z. Liu, Preheating analysis of semi-coke in a circulating fluidized bed and its kinetic characteristics, Energies 16 (10) (2023) 4124. [21] S.Q. Liu, W.P. Ma, Calcium-bearing minerals transformation during underground coal gasification, Minerals 9 (11) (2019) 708. [22] Y.C. Zhao, J.Y. Zhang, C.G. Zheng, Transformation of aluminum-rich minerals during combustion of a bauxite-bearing Chinese coal, Int. J. Coal Geol. 94 (2012) 182-190. [23] Y.Z. Liu, Z.H. Wang, Y. Lv, K.D. Wan, Y. He, J. Xia, K.F. Cen, Inhibition of sodium release from Zhundong coal via the addition of mineral additives: A combination of online multi-point LIBS and offline experimental measurements, Fuel 212 (2018) 498-505. [24] T. Weimer, R. Berger, C. Hawthorne, J.C. Abanades, Lime enhanced gasification of solid fuels: Examination of a process for simultaneous hydrogen production and CO2 capture, Fuel 87 (8-9) (2008) 1678-1686. [25] R.B. Finkelman, W. Orem, V. Castranova, C.A. Tatu, H.E. Belkin, B.S. Zheng, H.E. Lerch, S.V. Maharaj, A.L. Bates, Health impacts of coal and coal use: Possible solutions, Int. J. Coal Geol. 50 (1-4) (2002) 425-443. [26] G. Jegadeesan, S.R. Al-Abed, P. Pinto, Influence of trace metal distribution on its leachability from coal fly ash, Fuel 87 (10-11) (2008) 1887-1893. [27] C.C. Zhou, G.J. Liu, Z.Y. Xu, H. Sun, P.K.S. Lam, Effect of ash composition on the partitioning of arsenic during fluidized bed combustion, Fuel 204 (2017) 91-97. [28] I. Ganesh, G. Sundararajan, J.M.F. Ferreira, Formation and densification behavior of mullite aggregates from beach sand sillimanite, J. Am. Ceram. Soc. 91 (8) (2008) 2464-2468. [29] X.T. Yang, G.L. Song, Y. Xiao, Z.C. Ji, C. Wang, Characteristics of pyrolytic wastewater incineration and effects on NOx emissions of Shenmu coal, J. Environ. Chem. Eng. 10 (3) (2022) 108041. [30] C. Liang, X.F. Wang, Q.G. Lyu, Experimental investigation on fluidized modification in gasification of preheated coal using oxygen and steam, Fuel 304 (2021) 121375. [31] X.Y. Zhang, S.J. Zhu, W.J. Song, X.F. Wang, J.G. Zhu, R. Chen, H.L. Ding, J.C. Hui, Q.G. Lyu, Experimental study on conversion characteristics of anthracite and bituminous coal during preheating-gasification, Fuel 324 (2022) 124712. [32] H.L. Ding, Z.Q. Ouyang, Y.S. Shi, R. Chen, Z. Zhang, S.J. Zhu, Q.G. Lyu, Effects of the T-abrupt exit configuration of riser on fuel properties, combustion characteristics and NOx emissions with coal self-preheating technology, Fuel 337 (2023) 126860. [33] Y. Zhang, J.G. Zhu, Q.G. Lyu, F. Pan, Experimental study on combustion characteristics of pulverized coal based on partial gasification of circulating fluidized bed, Energy Fuels 34 (1) (2020) 989-995. [34] Y. Zhang, J.G. Zhu, Q.G. Lyu, F. Pan, S.J. Zhu, Characteristics of preheating combustion of power coal with high coking properties, J. Therm. Sci. 30 (4) (2021) 1108-1115. [35] X.Q. Shu, J.B. Li, M.M. Zhu, Z. Liu, X.F. Lu, Z.Z. Zhang, D.K. Zhang, An experimental investigation into bed particle agglomeration and ash deposition during circulating fluidized bed gasification of Zhundong lignite, J. Energy Inst. 96 (2021) 192-204. [36] X.B. Qi, G.L. Song, W.J. Song, Q.G. Lu, Influence of sodium-based materials on the slagging characteristics of Zhundong coal, J. Energy Inst. 90 (6) (2017) 914-922. [37] X.B. Qi, G.L. Song, W.J. Song, Q.G. Lyu, Mineral transformation behavior of Zhundong coal during circulating fludized bed gasification, Journal of Combustion Science and Technology 2017 23(1) 29-35. (in Chinese). [38] W. Li, D.B. Liu, S.Y. Li, R.J. Kong, Combustion performance and ash compositions during biomass/semi-coke blended fuel oxy-fuel circulating fluidized bed combustion, Energy Fuels 34 (3) (2020) 3522-3531. [39] B. Wei, X.B. Wang, H.Z. Tan, L.M. Zhang, Y.B. Wang, Z. Wang, Effect of silicon-aluminum additives on ash fusion and ash mineral conversion of Xinjiang high-sodium coal, Fuel 181 (2016) 1224-1229. [40] C. He, J. Bai, L.X. Kong, X.M. Li, J. Guo, Z.Q. Bai, Y.H. Qin, W. Li, Effect of iron valence distribution on ash fusion behavior under Ar atmosphere by a metallic iron addition in the synthetic coal ash, Fuel 310 (2022) 122340. [41] B.O. Oboirien, V. Thulari, B.C. North, Enrichment of trace elements in bottom ash from coal oxy-combustion: Effect of coal types, Appl. Energy 177 (2016) 81-86. [42] Z.F. Zhao, Q. Du, G.B. Zhao, J.M. Gao, H.M. Dong, Y. Cao, Q. Han, P.F. Yuan, L.P. Su, Fine particle emission from an industrial coal-fired circulating fluidized-bed boiler equipped with a fabric filter in China, Energy Fuels 28 (7) (2014) 4769-4780. [43] R.C. Bhangare, P.Y. Ajmal, S.K. Sahu, G.G. Pandit, V.D. Puranik, Distribution of trace elements in coal and combustion residues from five thermal power plants in India, Int. J. Coal Geol. 86 (4) (2011) 349-356. [44] S.L. Zhao, Y.F. Duan, J.C. Lu, S. Liu, D. Pudasainee, R. Gupta, M. Liu, J.H. Lu, Enrichment characteristics, thermal stability and volatility of hazardous trace elements in fly ash from a coal-fired power plant, Fuel 225 (2018) 490-498. [45] T.G. Yan, J. Bai, L.X. Kong, Z.Q. Bai, W. Li, J. Xu, Effect of SiO2/Al2O3 on fusion behavior of coal ash at high temperature, Fuel 193 (2017) 275-283. [46] L.X. Kong, J. Bai, H.Z. Li, X.D. Chen, J. Wang, Z.Q. Bai, Z.X. Guo, W. Li, The mineral evolution during coal washing and its effect on ash fusion characteristics of Shanxi high ash coals, Fuel 212 (2018) 268-273. [47] S.K. Zhou, M. Wang, H.Z. Tan, X.B. Wang, W.J. Yang, X.H. Xiong, F.X. Yang, Evaluation of aluminum ash in alleviating the ash deposition of high-sodium and high-iron coal, Fuel 273 (2020) 117701. |