[1] S. Shaikh, M. Yaqoob, P. Aggarwal, An overview of biodegradable packaging in food industry, Curr. Res. Food Sci. 4 (2021) 503-520. [2] J.J. Shen, J.W. Liang, X.F. Lin, H.J. Lin, J. Yu, Z.G. Yang, Recent progress in polymer-based building materials, Int. J. Polym. Sci. 2020 (2020) 8838160. [3] M. Mierzwa-Hersztek, K. Gondek, M. Kopec, Degradation of polyethylene and biocomponent-derived polymer materials: An overview, J. Polym. Environ. 27 (3) (2019) 600-611. [4] J. Baranwal, B. Barse, A. Fais, G.L. Delogu, A. Kumar, Biopolymer: A sustainable material for food and medical applications, Polymers 14 (5) (2022) 983. [5] A. Samir, F.H. Ashour, A.A. Abdel Hakim, M. Bassyouni, Recent advances in biodegradable polymers for sustainable applications, NPJ Mater. Degrad. 6 (2022) 68. [6] L. Ranakoti, B. Gangil, S.K. Mishra, T. Singh, S. Sharma, R.A. Ilyas, S. El-Khatib, Critical review on polylactic acid: Properties, structure, processing, biocomposites, and nanocomposites, Materials (Basel) 15 (12) (2022) 4312. [7] L. Zhou, K. Ke, M.B. Yang, W. Yang, Recent progress on chemical modification of cellulose for high mechanical-performance Poly(lactic acid)/Cellulose composite: A review, Compos. Commun. 23 (2021) 100548. [8] G. Li, M.H. Zhao, F. Xu, B. Yang, X.Y. Li, X.X. Meng, L.S. Teng, F.Y. Sun, Y.X. Li, Synthesis and biological application of polylactic acid, Molecules 25 (21) (2020) 5023. [9] Y.L. Li, D. Maciel, J. Rodrigues, X.Y. Shi, H. Tomas, Biodegradable polymer nanogels for drug/nucleic acid delivery, Chem. Rev. 115 (16) (2015) 8564-8608. [10] M.S. Singhvi, S.S. Zinjarde, D.V. Gokhale, Polylactic acid: Synthesis and biomedical applications, J. Appl. Microbiol. 127 (6) (2019) 1612-1626. [11] R.E. Drumright, P.R. Gruber, D.E. Henton, Polylactic acid technology, Adv. Mater. 12 (23) (2000) 1841-1846. [12] I. Gan, W.S. Chow, Antimicrobial poly(lactic acid)/cellulose bionanocomposite for food packaging application: A review, Food Packag. Shelf Life 17 (2018) 150-161. [13] T.A. Swetha, A. Bora, K. Mohanrasu, P. Balaji, R. Raja, K. Ponnuchamy, G. Muthusamy, A.R. A, A comprehensive review on polylactic acid (PLA)-Synthesis, processing and application in food packaging, Int. J. Biol. Macromol. 234 (2023) 123715. [14] K. Hamad, M. Kaseem, M. Ayyoob, J. Joo, F. Deri, Polylactic acid blends: The future of green, light and tough, Prog. Polym. Sci. 85 (2018) 83-127. [15] C.S. Proikakis, P.A. Tarantili, A.G. Andreopoulos, Synthesis and characterization of low molecular weight polylactic acid, J. Elastomers Plast. 34 (1) (2002) 49-63. [16] P. Stloukal, P. Kucharczyk, V. Sedlarik, P. Bazant, M. Koutny, Low molecular weight poly(lactic acid) microparticles for controlled release of the herbicide metazachlor: Preparation, morphology, and release kinetics, J. Agric. Food Chem. 60 (16) (2012) 4111-4119. [17] M. Glinka, K. Filatova, J. Kucinska-Lipka, E.D. Bergerova, A. Wasik, V. Sedlarik, Encapsulation of Amikacin into Microparticles Based on Low-Molecular-Weight Poly(lactic acid) and Poly(lactic acid- co-polyethylene glycol), Mol. Pharm. 18 (8) (2021) 2986-2996. [18] Y.M. Harshe, G. Storti, M. Morbidelli, S. Gelosa, D. Moscatelli, Polycondensation kinetics of lactic acid, Macromol. React. Eng. 1 (6) (2007) 611-621. [19] K. Hiltunen, J.V. Seppala, M. Harkonen, Effect of catalyst and polymerization conditions on the preparation of low molecular weight lactic acid polymers, Macromolecules 30 (3) (1997) 373-379. [20] G.P. Paul, N. Virivinti, An outlook on recent progress in poly(lactic acid): Polymerization, modeling, and optimization, Iran. Polym. J. 31 (1) (2022) 59-81. [21] S.P. Das, A. Gupta, D. Das, A. Goyal, Enhanced bioethanol production from water hyacinth (Eichhornia crassipes) by statistical optimization of fermentation process parameters using Taguchi orthogonal array design, Int. Biodeterior. Biodegrad. 109 (2016) 174-184. [22] Y. Wang, K.T. Fang, A note on uniform distribution and experimental design, Mon. J. Sci. 26 (6) (1981) 485-489. [23] W.R. Xue, T. Qin, Q. Li, M.W. Zan, X.Q. Yu, H. Li, Exploiting the synergistic effects of multiple components with a uniform design method for developing low-temperature electrolytes, Energy Storage Mater. 50 (2022) 598-605. [24] Q.S. Xu, Y.D. Xu, L. Li, K.T. Fang, Uniform experimental design in chemometrics, J. Chemom. 32 (11) (2018) 3020. [25] J.T. Guan, C.F. Han, Y.X. Guan, S.H. Zhang, J.X. Yun, S.J. Yao, Optimizational production of phenyllactic acid by a Lactobacillus buchneri strain via uniform design with overlay sampling methodology, Chin. J. Chem. Eng. 27 (2) (2019) 418-425. [26] C.T. Yang, E. Kristiani, Y.K. Leong, J.S. Chang, Big data and machine learning driven bioprocessing-Recent trends and critical analysis, Bioresour. Technol. 372 (2023) 128625. [27] M. Mowbray, T. Savage, C.F. Wu, Z.Q. Song, B.A. Cho, E.A. Del Rio-Chanona, D.D. Zhang, Machine learning for biochemical engineering: A review, Biochem. Eng. J. 172 (2021) 108054. [28] A. Krogh, What are artificial neural networks? Nat. Biotechnol. 26 (2) (2008) 195-197. [29] H.C. Tao, T.Y. Wu, M. Aldeghi, T.C. Wu, A. Aspuru-Guzik, E. Kumacheva, Nanoparticle synthesis assisted by machine learning, Nat. Rev. Mater. 6 (8) (2021) 701-716. [30] M. Ebqa’ai, M.F. Tamimi, A.J. Kassick, S.E. Averick, T.L. Nelson, One-pot Phenolic-initiated mechanochemical synthesis of Poly(lactic acid) nanoparticles: Application of the artificial neural network algorithm to perform sensitivity assessment models, Macromolecules 55 (21) (2022) 9740-9750. [31] L. Dall Agnol, H.L. Ornaghi Jr, F. Monticeli, F.T.G. Dias, O. Bianchi, Polyurethanes synthetized with polyols of distinct molar masses: Use of the artificial neural network for prediction of degree of polymerization, Polym. Eng. Sci. 61 (6) (2021) 1810-1818. [32] S.K. Arumugasamy, Z.Y. Chen, L.D. Van Khoa, H. Pakalapati, Comparison between artificial neural networks and support vector machine modeling for polycaprolactone synthesis via enzyme catalyzed polymerization, Process. Integr. Optim. Sustain. 5 (3) (2021) 599-607. [33] A. Bhattarai, Determination of the average molecular weight of sodium polystyrenesulphonate from viscosity measurement, Sci. World 10 (10) (2012) 17-19. [34] Y. Deng, X.L. Zhou, J. Shen, G. Xiao, H.C. Hong, H.J. Lin, F.Y. Wu, B.Q. Liao, New methods based on back propagation (BP) and radial basis function (RBF) artificial neural networks (ANNs) for predicting the occurrence of haloketones in tap water, Sci. Total Environ. 772 (2021) 145534. [35] R. Hecht-Nielsen, Neural networks for perception, Elsevier, Amsterdam, 1992. [36] Z.T. Zhao, Y. Lou, Y.F. Chen, H.J. Lin, R.J. Li, G.Y. Yu, Prediction of interfacial interactions related with membrane fouling in a membrane bioreactor based on radial basis function artificial neural network (ANN), Bioresour. Technol. 282 (2019) 262-268. [37] B.W. Chieng, I.N. Azowa, W.M.Z.W. Yunus, M.Z. Hussein, Effects of graphene nanopletelets on poly(lactic acid)/poly(ethylene glycol) polymer nanocomposites, Adv. Mater. Res. 1024 (2014) 136-139. [38] H. Wan, C. Sun, C. Xu, B.W. Wang, Y. Chen, Y.Q. Yang, H.Y. Tan, Y.H. Zhang, Synergistic reinforcement of polylactic acid/wood fiber composites by cellulase and reactive extrusion, J. Clean. Prod. 434 (2024) 140207. [39] T. Vu, P. Nikaeen, W. Chirdon, A. Khattab, D. Depan, Improved weathering performance of poly(lactic acid) through carbon nanotubes addition: Thermal, microstructural, and nanomechanical analyses, Biomimetics (Basel) 5 (4) (2020) 61. [40] F. Carrasco, P. Pages, J. Gamez-Perez, O.O. Santana, M.L. Maspoch, Processing of poly(lactic acid): Characterization of chemical structure, thermal stability and mechanical properties, Polym. Degrad. Stab. 95 (2) (2010) 116-125. [41] Y. Wang, J.L. Gomez Ribelles, M. Salmeron Sanchez, J.F. Mano, Morphological Contributions to Glass Transition in Poly(l-lactic acid), Macromolecules 38 (11) (2005) 4712-4718. [42] C.B. Zhou, H.L. Guo, J.Q. Li, S.Y. Huang, H.F. Li, Y.F. Meng, D.H. Yu, J. de Claville Christiansen, S.C. Jiang, Temperature dependence of poly(lactic acid) mechanical properties, RSC Adv. 6 (114) (2016) 113762-113772. [43] P.I.P. Park, S. Jonnalagadda, Predictors of glass transition in the biodegradable poly-lactide and poly-lactide-co-glycolide polymers, J. Appl. Polym. Sci. 100 (3) (2006) 1983-1987. [44] Y.N. Chang, R.E. Mueller, E.L. Iannotti, Use of low MW polylactic acid and lactide to stimulate growth and yield of soybeans, Plant Growth Regul. 19 (3) (1996) 223-232. [45] Y.M. Zhao, Z.Y. Wang, J. Wang, H.Z. Mai, B. Yan, F. Yang, Direct synthesis of poly(D, L-lactic acid) by melt polycondensation and its application in drug delivery, J. Appl. Polym. Sci. 91 (4) (2004) 2143-2150. [46] A.G. Andreopoulos, E.C. Hatzi, M. Doxastakis, Controlled release systems based on poly(lactic acid). An in vitro and in vivo study, J. Mater. Sci. Mater. Med. 11 (6) (2000) 393-397. [47] S. Farah, D.G. Anderson, R. Langer, Physical and mechanical properties of PLA, and their functions in widespread applications-A comprehensive review, Adv. Drug Deliv. Rev. 107 (2016) 367-392. |