[1] C.J. Vorosmarty, P.B. McIntyre, M.O. Gessner, D. Dudgeon, A. Prusevich, P. Green, S. Glidden, S.E. Bunn, C.A. Sullivan, C.R. Liermann, P.M. Davies, Global threats to human water security and river biodiversity, Nature 467 (7315) (2010) 555-561. [2] H. Boukhatem, H. Khalaf, L. Djouadi, F.V. Gonzalez, R.M. Navarro, J.A. Santaballa, M. Canle, Photocatalytic activity of mont-La (6%)-Cu0.6Cd0.4S catalyst for phenol degradation under near UV visible light irradiation, Appl. Catal. B Environ. 211 (2017) 114-125. [3] G. Thennarasu, A. Sivasamy, Metal ion doped semiconductor metal oxide nanosphere particles prepared by soft chemical method and its visible light photocatalytic activity in degradation of phenol, Powder Technol. 250 (2013) 1-12. [4] F.P. Camargo, P. Sergio Tonello, A.C.A. dos Santos, I.C.S. Duarte, Removal of toxic metals from sewage sludge through chemical, physical, and biological treatments-a review, Water Air Soil Pollut. 227 (12) (2016) 433. [5] H. Lee, P. Kannan, A. Al Shoaibi, C. Srinivasakannan, Phenol degradation catalyzed by metal oxide supported porous carbon matrix under UV irradiation, J. Water Process. Eng. 31 (2019) 100869. [6] R. Moosai, R.A. Dawe, Gas attachment of oil droplets for gas flotation for oily wastewater cleanup, Sep. Purif. Technol. 33 (3) (2003) 303-314. [7] L. Wen-wu, W. Xiu-ping, T. Xue-yan, W. Chang-yong, Treatment of pretreated coking wastewater by flocculation, alkali out, air stripping, and three-dimensional electrocatalytic oxidation with parallel plate electrodes, Environ. Sci. Pollut. Res. Int. 21 (19) (2014) 11457-11468. [8] J.D. Munoz Sierra, C. Lafita, C. Gabaldon, H. Spanjers, J.B. van Lier, Trace metals supplementation in anaerobic membrane bioreactors treating highly saline phenolic wastewater, Bioresour. Technol. 234 (2017) 106-114. [9] H.L. Jing, H.T. Yang, X.H. Yu, C.Q. Hu, R.X. Li, H.T. Li, Treatment of organic matter and ammonia nitrogen in wastewater by electrocatalytic oxidation: a review of anode material preparation, Environ. Sci.: Water Res. Technol. 8 (2) (2022) 226-248. [10] Y.W. Yao, C.J. Huang, Y. Yang, M.Y. Li, B.L. Ren, Electrochemical removal of thiamethoxam using three-dimensional porous PbO2-CeO2 composite electrode: electrode characterization, operational parameters optimization and degradation pathways, Chem. Eng. J. 350 (2018) 960-970. [11] H.T. Li, H.T. Yang, J.X. Cheng, C.Q. Hu, Z.K. Yang, C.C. Wu, Three-dimensional particle electrode system treatment of organic wastewater: a general review based on patents, J. Clean. Prod. 308 (2021) 127324. [12] Z.Y. Wang, X.L. He, J.F. Li, J.Y. Qi, C. Zhao, G. Yang, Preparation of magnetic steel-slag particle electrode and its performance in a novel electrochemical reactor for oilfield wastewater advanced treatment, J. Ind. Eng. Chem. 58 (2018) 18-23. [13] T. Pang, Y. Wang, H. Yang, T. Wang, W. Cai, Dynamic model of organic pollutant degradation in three dimensional packed bed electrode reactor, Chemosphere 206 (2018) 107-114. [14] L. Xu, H. Zhao, S. Shi, G. Zhang, J. Ni, Electrolytic treatment of C.I. Acid Orange 7 in aqueous solution using a three-dimensional electrode reactor, Dyes Pigm. 77 (1) (2008) 158-164. [15] J. Li, J.F. Yan, G. Yao, Y.H. Zhang, X. Li, B. Lai, Improving the degradation of atrazine in the three-dimensional (3D) electrochemical process using CuFe2O4 as both particle electrode and catalyst for persulfate activation, Chem. Eng. J. 361 (2019) 1317-1332. [16] B. Wang, W. Kong, H. Ma, Electrochemical treatment of paper mill wastewater using three-dimensional electrodes with Ti/Co/SnO2-Sb2O5 anode, J. Hazard. Mater. 146 (1-2) (2007) 295-301. [17] Y.D. Dai, C. Yuan, C.P. Huang, P.C. Chiang, Regeneration of spent carbon nanotubes by electrochemical oxidation over RuO 2/Ti electrode, Sep. Purif. Technol. 178 (2017) 207-214. [18] M. Lin, Y.Z. Pan, Feasibility study of the decolorization of simulated rhodamine B dye wastewater with a three-dimensional electrode reactor, 2011 International Conference on Computer Distributed Control and Intelligent Environmental Monitoring. Changsha, China. IEEE, (2011) 2439-2442. [19] D.C.S. Alves, B.B. Coseglio, L.A.A. Pinto, T.R.S. Cadaval Jr, Development of Spirulina/chitosan foam adsorbent for phenol adsorption, J. Mol. Liq. 309 (2020) 113256. [20] N.R. Neti, R. Misra, Efficient degradation of Reactive Blue 4 in carbon bed electrochemical reactor, Chem. Eng. J. 184 (2012) 23-32. [21] T.A. Saleh, S.O. Adio, M. Asif, H. Dafalla, Statistical analysis of phenols adsorption on diethylenetriamine-modified activated carbon, J. Clean. Prod. 182 (2018) 960-968. [22] C. Zhang, Y.H. Jiang, Y.L. Li, Z.X. Hu, L. Zhou, M.H. Zhou, Three-dimensional electrochemical process for wastewater treatment: a general review, Chem. Eng. J. 228 (2013) 455-467. [23] M. Zhou, M. Zhou, L. Lei, The role of activated carbon on the removal of p-nitrophenol in an integrated three-phase electrochemical reactor, Chemosphere 65 (7) (2006) 1197-1203. [24] X. Zhao, A. Li, R. Mao, H. Liu, J. Qu, Electrochemical removal of haloacetic acids in a three-dimensional electrochemical reactor with Pd-GAC particles as fixed filler and Pd-modified carbon paper as cathode, Water Res. 51 (2014) 134-143. [25] K.W. Jung, M.J. Hwang, D.S. Park, K.H. Ahn, Performance evaluation and optimization of a fluidized three-dimensional electrode reactor combining pre-exposed granular activated carbon as a moving particle electrode for greywater treatment, Sep. Purif. Technol. 156 (2015) 414-423. [26] H. Chen, Y. Feng, N. Suo, Y. Long, X. Li, Y. Shi, Y. Yu, Preparation of particle electrodes from manganese slag and its degradation performance for salicylic acid in the three-dimensional electrode reactor (TDE), Chemosphere 216 (2019) 281-288. [27] K.W. Jung, M.J. Hwang, D.S. Park, K.H. Ahn, Combining fluidized metal-impregnated granular activated carbon in three-dimensional electrocoagulation system: feasibility and optimization test of color and COD removal from real cotton textile wastewater, Sep. Purif. Technol. 146 (2015) 154-167. [28] B.L. Hou, B.Z. Ren, R.J. Deng, G.C. Zhu, Z.H. Wang, Z. Li, Three-dimensional electro-Fenton oxidation of N-heterocyclic compounds with a novel catalytic particle electrode: high activity, wide pH range and catalytic mechanism, RSC Adv. 7 (25) (2017) 15455-15462. [29] Z.G. Liu, F.F. Wang, Y.S. Li, T.L. Xu, S.M. Zhu, Continuous electrochemical oxidation of methyl orange waste water using a three-dimensional electrode reactor, J. Environ. Sci. 23 (2011) S70-S73. [30] Y.Q. Wang, B. Gu, W.L. Xu, Electro-catalytic degradation of phenol on several metal-oxide anodes, J. Hazard. Mater. 162 (2-3) (2009) 1159-1164. [31] Y. Pu, F. Zhao, Y.N. Chen, X.Y. Lin, H.R. Yin, X.H. Tang, Enhanced electrocatalytic oxidation of phenol by SnO2-Sb2O3/GAC particle electrodes in a three-dimensional electrochemical oxidation system, Water 15 (10) (2023) 1844. [32] Y. Chen, W. Shi, H.M. Xue, W.Q. Han, X.Y. Sun, J.S. Li, L.J. Wang, Enhanced electrochemical degradation of dinitrotoluene wastewater by Sn-Sb-Ag-modified ceramic particulates, Electrochim. Acta 58 (2011) 383-388. [33] Y. Wang, C.C. Shen, M.M. Zhang, B.T. Zhang, Y.G. Yu, The electrochemical degradation of ciprofloxacin using a SnO2-Sb/Ti anode: influencing factors, reaction pathways and energy demand, Chem. Eng. J. 296 (2016) 79-89. [34] M.H. Zhou, Z.C. Wu, X.J. Ma, Y.Q. Cong, Q. Ye, D.H. Wang, A novel fluidized electrochemical reactor for organic pollutant abatement, Sep. Purif. Technol. 34 (1-3) (2004) 81-88. |