[1] M.Y. Liu, X.L. Li, R.T. Lin, W.C. Liang, Appliance prospects of fortified thermal transfer and deposit prevention and removal techniques of three-phase circulating fluidized bed in the caustic soda evaporator, Chlor-Alkali Ind, 11 (2002) 21-23. [2] H.C. Lee, G. Kang, Y.P. Lee, H.S. Han, D.K. Stevens, Development of an advanced evaporation system with fouling-free technology using a circulating fluidized bed heat exchanger, Environ. Eng. Sci. 20 (4) (2003) 319-327. [3] D.G. Klaren, E.F. De Boer, D.W. Sullivan, “zero fouling” self-cleaning heat exchanger, Heat Transf. Eng. 28 (3) (2007) 216-221. [4] P.T. Diniz Filho, J.L. Silveira, C.E. Tuna, W. de Queiroz Lamas, Energetic, ecologic and fluid-dynamic analysis of a fluidized bed gasifier operating with sugar cane bagasse, Appl. Therm. Eng. 57 (1-2) (2013) 116-124. [5] C.S. Oon, S.N. Kazi, M.A. Hakimin, A.H. Abdelrazek, A.R. Mallah, F.W. Low, S.K. Tiong, I.A. Badruddin, S. Kamanger, Heat transfer and fouling deposition investigation on the titanium coated heat exchanger surface, Powder Technol. 373 (2020) 671-680. [6] M.C. Shou, L.P. Leu, Energy of power spectral density function and wavelet analysis of absolute pressure fluctuation measurements in fluidized beds, Chem. Eng. Res. Des. 83 (5) (2005) 478-491. [7] S. Sasic, B. Leckner, F. Johnsson, Characterization of fluid dynamics of fluidized beds by analysis of pressure fluctuations, Prog. Energy Combust. Sci. 33 (5) (2007) 453-496. [8] H. Sedighikamal, R. Zarghami, Dynamic characteristics of bubbling fluidization through recurrence rate analysis of pressure fluctuations, Particuology 11 (3) (2013) 282-287. [9] X.S. Lu, H.Z. Li, Wavelet analysis of pressure fluctuation signals in a bubbling fluidized bed, Chem. Eng. J. 75 (2) (1999) 113-119. [10] C. Jian, Studies of heat transfer enhancement and fouling prevention in a vapor liquid solid three phase circulating fluidized bed evaporator, Chem. Eng. J. 22 (1) (2000) 99-102. [11] J.R. van Ommen, S. Sasic, J. van der Schaaf, S. Gheorghiu, F. Johnsson, M.O. Coppens, Time-series analysis of pressure fluctuations in gas-solid fluidized beds-A review, Int. J. Multiph. Flow 37 (5) (2011) 403-428. [12] J.P. Xue, M.Y. Liu, A.H. Qiang, Chaotic analysis and prediction of evaporation system with vapor-liquid flow boiling, J. Chem. Eng. Chin. Univ, 20 (01) (2006) 12-17. [13] M.Y. Liu, A.H. Qiang, B.F. Sun, Chaotic characteristics in an evaporator with a vapor-liquid-solid boiling flow, Chem. Eng. Process. Process. Intensif. 45 (1) (2006) 73-78. [14] M.Y. Liu, J.P. Xue, A.H. Qiang, Nonlinear forecast of heat transfer coefficient signal in fluidized bed evaporator, Chem. Eng. Res. Des. 86 (1) (2008) 55-64. [15] X.P. Xu, M.Y. Liu, Y. Ma, M. An, Nonlinear behaviors of vibration acceleration signals in a graphite tube with vapor-liquid-solid boiling flows, Powder Technol. 316 (2017) 315-328. [16] R. Zhao, R.Q. Yan, Z.H. Chen, K.Z. Mao, P. Wang, R.X. Gao, Deep learning and its applications to machine health monitoring, Mech. Syst. Signal Process. 115 (2019) 213-237. [17] Y.G. Lei, B. Yang, X.W. Jiang, F. Jia, N.P. Li, A.K. Nandi, Applications of machine learning to machine fault diagnosis: a review and roadmap, Mech. Syst. Signal Process. 138 (2020) 106587. [18] R.H. Abiyev, O. Kaynak, E. Kayacan, A type-2 fuzzy wavelet neural network for system identification and control, J. Frankl. Inst. 350 (7) (2013) 1658-1685. [19] X. Xia, X.F. Liu, J.C. Lou, A network traffic prediction model of smart substation based on IGSA-WNN, ETRI J. 42 (3) (2020) 366-375. [20] C. Wang, L. Chen, L. Li, Y.H. Yan, J. Sun, C. Yu, X. Deng, C.P. Liang, X.L. Zhang, W.M. Peng, Combining unscented Kalman filter and wavelet neural network for anti-slug, Petrol. Sci. 20 (6) (2023) 3752-3765. [21] J.Y. Kim, D. Kim, Z.J. Li, C. Dariva, Y.K. Cao, N. Ellis, Predicting and optimizing syngas production from fluidized bed biomass gasifiers: a machine learning approach, Energy 263 (2023) 125900. [22] H. Sharma, G. Das, A.N. Samanta, ANN-based prediction of two-phase gas-liquid flow patterns in a circular conduit, AlChE. J. 52 (9) (2006) 3018-3028. [23] K. Korkerd, C. Soanuch, D. Gidaspow, P. Piumsomboon, B. Chalermsinsuwan, Artificial neural network model for predicting minimum fluidization velocity and maximum pressure drop of gas fluidized bed with different particle size distributions, S Afr N J. Chem. Eng. 37 (2021) 61-73. [24] B. Wang, H. Zhou, S. Jing, Q. Zheng, W.J. Lan, S.W. Li, A data-driven model of drop size prediction based on artificial neural networks using small-scale data sets, Chin. J. Chem. Eng. 66 (2024) 71-83. [25] S.K. Jana, A.B. Biswas, S.K. Das, Pressure drop in tapered bubble columns using non-Newtonian pseudoplastic liquid-experimental and ANN prediction, Can. J. Chem. Eng. 92 (3) (2014) 578-584. [26] P. Ong, Z. Zainuddin, Optimizing wavelet neural networks using modified cuckoo search for multi-step ahead chaotic time series prediction, Appl. Soft Comput. 80 (2019) 374-386. [27] P. Ong, Z. Zainuddin, An optimized wavelet neural networks using cuckoo search algorithm for function approximation and chaotic time series prediction, Decis. Anal. J. 6 (2023) 100188. [28] Q.P. Han, P. Wang, Measurement and estimation of largest Lyapunov exponents of human HRV signals, J. Dyn. Control, 4 (03) (2006) 247-252. [29] Z.C. Yang, R.L. Zhang, Analysis of Panel thermal flutter using maximum Lyapunov exponent, J. Northwest. Polytech. Univ, 27 (06) (2009) 770-776. [30] M. Lukosevicius, H. Jaeger, Reservoir computing approaches to recurrent neural network training, Comput. Sci. Rev. 3 (3) (2009) 127-149. [31] M. An, M.Y. Liu, Y. Ma, X.P. Xu, Multi-scale vibration behavior of a graphite tube with an internal vapor-liquid-solid boiling flow, Powder Technol. 291 (2016) 201-213. [32] A. Esmaeili, C. Guy, J. Chaouki, The effects of liquid phase rheology on the hydrodynamics of a gas-liquid bubble column reactor, Chem. Eng. Sci. 129 (2015) 193-207. [33] L. Zhao, Y. He, Power spectrum estimation of the welch method based on imagery EEG, Appl. Mech. Mater. 278-280 (2013) 1260-1264. [34] M.T. Rosenstein, J.J. Collins, C.J. De Luca, A practical method for calculating largest Lyapunov exponents from small data sets, Phys. D Nonlinear Phenom. 65 (1-2) (1993) 117-134. [35] H.S. Kim, R. Eykholt, J.D. Salas, Nonlinear dynamics, delay times, and embedding windows, Phys. D Nonlinear Phenom. 127 (1-2) (1999) 48-60. [36] D. Sun, G.B. Li, H.J. Wei, H.F. Liao, Experimental study on the chaotic attractor evolvement of the friction vibration in a running-in process, Tribol. Int. 88 (2015) 290-297. [37] N.H. Packard, J.P. Crutchfield, J.D. Farmer, R.S. Shaw, Geometry from a time series, Phys. Rev. Lett. 45 (9) (1980) 712-716. [38] P. Grassberger, I. Procaccia, Measuring the strangeness of strange attractors, Phys. D Nonlinear Phenom. 9 (1-2) (1983) 189-208. |