[1] G.Q. Guan, M. Kaewpanha, X.G. Hao, A. Abudula, Catalytic steam reforming of biomass tar: prospects and challenges, Renew. Sustain. Energy Rev. 58 (2016) 450-461. [2] M. Mehdi, S. Ali Ammar Taqvi, A.A. Shaikh, S. Khan, S.R. Naqvi, M. Shahbaz, D.Juchelkova, Aspen plus simulation model of municipal solid waste gasification of metropolitan city for syngas production, Fuel 344 (2023) 128128. [3] P. Parthasarathy, K.S. Narayanan, Hydrogen production from steam gasification of biomass: influence of process parameters on hydrogen yield-A review, Renew. Energy 66 (2014) 570-579. [4] J. Li, Y.P. Xie, K. Zeng, G. Flamant, H.P. Yang, X.Y. Yang, D. Zhong, Z.Y. Du, H.P. Chen, Biomass gasification in molten salt for syngas production, Energy 210 (2020) 118563. [5] A. Arregi, M. Amutio, G. Lopez, J. Bilbao, M. Olazar, Evaluation of thermochemical routes for hydrogen production from biomass: a review, Energy Convers. Manag. 165 (2018)695-719. [6] J. Mazumder, H.I. de Lasa, Catalytic steam gasification of biomass surrogates: thermodynamics and effect of operating conditions, Chem. Eng. J. 293 (2016) 232-242. [7] P.S. Marathe, S.R.G. Oudenhoven, P.W. Heerspink, S.R.A. Kersten, R.J.M. Westerhof, Fast pyrolysis of cellulose in vacuum: the effect of potassium salts on the primary reactions, Chem. Eng. J. 329 (2017) 187-197. [8] J.P. Liu, X. Chen, W. Chen, M.W. Xia, Y.Q. Chen, H.P. Chen, K. Zeng, H.P. Yang, Biomass pyrolysis mechanism for carbon-based high-value products, Proc. Combust. Inst. 39 (3) (2023) 3157-3181. [9] J.J. Dai, J. Saayman, J.R. Grace, N. Ellis, Gasification of woody biomass, Annu. Rev. Chem. Biomol. Eng. 6 (2015) 77-99. [10] Z. He, Z.J. Liu, J.L. Song, P.F. Lian, Q.G. Guo, Fine-grained graphite with super molten salt barrier property produced from filler of natural graphite flake by a liquid-phase mixing process, Carbon 145 (2019) 367-377. [11] Y.F. Shen, X.Z. Yuan, Research advancement in molten salt-mediated thermochemical upcycling of biomass waste, Green Chem. 25 (6) (2023) 2087-2108. [12] Y.P. Xie, H.P. Yang, K. Zeng, Y.J. Zhu, J.H. Hu, Q.T. Mao, Q.C. Liu, H.P. Chen, Study on CO2 gasification of biochar in molten salts: reactivity and structure evolution, Fuel 254 (2019) 115614. [13] K. Jin, D.X. Ji, Q.L. Xie, Y. Nie, F.W. Yu, J.B. Ji, Hydrogen production from steam gasification of tableted biomass in molten eutectic carbonates, Int. J. Hydrog. Energy 44 (41) (2019) 22919-22925. [14] K. Zeng, X.Y. Yang, Y.P. Xie, H.P. Yang, J. Li, D. Zhong, H.Y. Zuo, A. Nzihou, Y.J. Zhu, H.P. Chen, Molten salt pyrolysis of biomass: the evaluation of molten salt, Fuel 302 (2021) 121103. [15] B. Wojnicka, M. Sciazko, J.C. Schmid, Modelling of biomass gasification with steam, Biomass Convers. Biorefin. 11 (5) (2021) 1787-1805. [16] S. Ratchahat, A. Srifa, W. Koo-amornpattana, C. Sakdaronnarong, T. Charinpanitkul, K.C.W. Wu, P.L. Show, S. Kodama, W. Tanthapanichakoon, H. Sekiguchi, Syngas production with low tar content from cellulose pyrolysis in molten salt combined with Ni/Al2O3 catalyst, J. Anal. Appl. Pyrolysis 158 (2021) 105243. [17] Z.C. Liu, H. Li, S.L. Liu, J.Z. Chen, Z.S. Zhang, X.G. Li, A.G. Zhang, W. Yuan, X. Gao, Thermodynamics fundamentals and energy efficiency for the separation and high-valued utilization of Fischer-Tropsch heavy oil, Int. J. Coal Sci. Technol. 9 (1) (2022) 57. [18] M. Xu, H.Y. Hu, F. Yang, Y.H. Yang, L.K. Jiang, H. Tang, X. Li, K. Xu, H. Yao, Novel findings in conversion mechanism of toluene as model compound of biomass waste tar in molten salt, J. Anal. Appl. Pyrolysis 134 (2018) 274-280. [19] Q. Chen, Z.R. Liu, Y. Luo, C. Xiang, H.J. Zhen, X.J. Wang, G.S. Yu, X.L. Chen, H.F. Liu, F.C. Wang, Particle scale study on gasification of char in molten salt under carbon dioxide atmosphere, Fuel 356 (2024) 129612. [20] D.D. Feng, Y.J. Zhao, Y. Zhang, J.M. Gao, S.Z. Sun, Changes of biochar physiochemical structures during tar H2O and CO2 heterogeneous reforming with biochar, Fuel Process. Technol. 165 (2017) 72-79. [21] Xie YP. Experimental Study of Pyrolysis and Gasification Process of Biomass Molten Carbonate, Ph. D. Thesis, Huazhong University of Science and Technology, Wuhan, 2022. [22] J. Li, K. Zeng, D. Zhong, X. Chen, A. Nzihou, H.P. Yang, H.P. Chen, Algae pyrolysis in alkaline molten salt: products transformation, Fuel 358 (2024) 129868. [23] Y. Kanai, K. Terasaka, S. Fujioka, K. Fukunaga, Absorption of carbon dioxide at high temperature with molten alkali carbonate using bubble column reactor, J. Chem. Eng. Jpn. 52 (1) (2019) 31-40. [24] S. Ratchahat, S. Kodama, W. Tanthapanichakoon, H. Sekiguchi, CO2 gasification of biomass wastes enhanced by Ni/Al2O3 catalyst in molten eutectic carbonate salt, Int. J. Hydrog. Energy 40 (35) (2015) 11809-11822. [25] C.Q. Pham, T.J. Siang, P.S. Kumar, Z. Ahmad, L.L. Xiao, M.B. Bahari, A.N.T. Cao, N. Rajamohan, A.S. Qazaq, A. Kumar, P.L. Show, D.V N. Vo, Production of hydrogen and value-added carbon materials by catalytic methane decomposition: a review, Environ. Chem. Lett. 20 (4) (2022) 2339-2359. [26] B. Li, C.F. Magoua Mbeugang, X. Xie, J.T. Wei, S.H. Zhang, L. Zhang, A.A. El Samahy, D.L. Xu, Q. Wang, S. Zhang, D.J. Liu, Catalysis/CO2 sorption enhanced pyrolysis-gasification of biomass for H2-rich gas production: effects of activated carbon, NiO active component and calcined dolomite, Fuel 334 (2023) 126842. [27] X. Fu, J.L. Zhang, X.Y. Gu, H.B. Yu, S.L. Chen, A comprehensive study of the promoting effect of manganese on white rot fungal treatment for enzymatic hydrolysis of woody and grass lignocellulose, Biotechnol. Biofuels 14 (1) (2021) 176. [28] W. Wang, Z. Zhang, M. Wang, Preparation of NiO-N/C composites for electrochemical oxidation of 5-hydroxymethylfurfural to 2, 5-furandicarboxylic acid, Biomass Convers. Biorefin. 13 (18) (2023) 17247-17254. [29] Y.Z. Chai, M. Bai, A.W. Chen, J.Y. Yuan, C. Peng, D.Y. Zhao, B.H. Yan, P.F. Qin, Cr-Mn bimetallic functionalized USY zeolite monolithic catalyst for direct production of 2, 5-Furandicarboxylic acid from raw biomass, Chem. Eng. J. 429 (2022) 132173. [30] A. Estrada Leon, M. Pala, H.J. Heeres, W. Prins, F. Ronsse, Micro-pyrolysis of various lignocellulosic biomasses in molten chloride salts, J. Anal. Appl. Pyrolysis 168 (2022) 105739. [31] K. Zeng, J. Li, Y.P. Xie, H.P. Yang, X.Y. Yang, D. Zhong, W.X. Zhen, G. Flamant, H.P. Chen, Molten salt pyrolysis of biomass: the mechanism of volatile reforming and pyrolysis, Energy 213 (2020) 118801. [32] Y.H. Yang, H.Y. Hu, F. Yang, H. Tang, H. Liu, B.J. Yi, X. Li, H. Yao, Thermochemical conversion of lignocellulosic bio-waste via fast pyrolysis in molten salts, Fuel 278 (2020) 118228. [33] M.L. Yang, G.Z. Chang, W.W. Cui, P. Ni, Q.J. Yi, L.S. Yang, C.P. Wang, In situ hydrodeoxygenation of heavy bio-oil using a Ce/Fe-based oxygen carrier in methanol-zero valent aluminum media, Chemosphere 352 (2024) 141338. [34] Y.Y. Yang, P.Y. Xiao, M. Wen, T.T. Liu, J.Z. Yang, S.J. Dai, Y.C. Zhao, Q.F. Huang, Z.W. Liu, B. Li, A review on the modified red mud for biomass catalytic pyrolysis: preparation, mechanisms and perspectives, J. Anal. Appl. Pyrolysis 178 (2024) 106430. [35] F. Ullah, G.Z. Ji, L. Zhang, M. Irfan, Z.G. Fu, Z. Manzoor, A.M. Li, Assessing pyrolysis performance and product evolution of various medical wastes based on model-free and TG-FTIR-MS methods, Chem. Eng. J. 473 (2023) 145300. [36] Z.Y. Liu, J. Jin, L.Q. Zheng, R.P. Zhang, B. Dong, G.W. Liang, Z.Y. Zhai, Adhesion strength of straw biomass ash: effect of dolomite additive, Energy 262 (2023) 125320. [37] M.J. Rahimi, B. Ghorbani, M. Amidpour, M.H. Hamedi, Configuration optimization of a multi-generation plant based on biomass gasification, Energy 227 (2021) 120457. |