[1] S. Yan, J.C. Bi, X. Qu, The behavior of catalysts in hydrogasification of sub-bituminous coal in pressured fluidized bed, Appl. Energy 206 (2017) 401-412. [2] T. Qin, N. Li, H. Ma, G.D. Wang, X.G. Zhang, Y.N. Feng, W. Lu, S.F. Yuan, Group VIII metals effects on lignite pyrolysis and char gasification with Ca-based catalyst, Fuel 372 (2024) 132068. [3] S.M. Gu, J. Feng, R. Zhang, X. Qu, Evolution of char structure during cobalt-calcium catalyzed coal hydrogasification and its impact on gas-solid hydrodynamics of gasifier, Powder Technol. 433 (2024) 119273. [4] J. Feng, S. Yan, R. Zhang, S.M. Gu, X. Qu, J.C. Bi, Recycling and reuse performance of cobalt catalyst for coal hydrogasification, Fuel 335 (2023) 126939. [5] S. Yan, J. Feng, S.F. Yuan, Z.H. Xia, F.S. Han, X. Qu, J.C. Bi, A critical review on direct catalytic hydrogasification of coal into CH4: Catalysis process configurations, evaluations, and prospects, Int. J. Coal Sci. Technol. 11 (1) (2024) 32. [6] T. Haga, Y. Nishiyama, Promotion of iron-group catalysts by a calcium salt in hydrogasification of coal chars, Ind. Eng. Chem. Res. 28 (6) (1989) 724-728. [7] J.T. Jiang, Q.Y. Liu, Z.Y. Liu, Superior catalytic effect of calcium oxide on the hydrogasification of char for CH4, Fuel 180 (2016) 737-742. [8] S. Yan, X. Qu, Z.H. Xia, C.X. Chen, J.C. Bi, Effect of experimental variables on coal catalytic hydrogasification in a pressurized fluidized bed, Fuel 307 (2022) 121761. [9] J.G. Yates, Effects of temperature and pressure on gas-solid fluidization, Chem. Eng. Sci. 51 (2) (1996) 167-205. [10] J. Shabanian, J. Chaouki, Effects of temperature, pressure, and interparticle forces on the hydrodynamics of a gas-solid fluidized bed, Chem. Eng. J. 313 (2017) 580-590. [11] Y. Kaneko, T. Shiojima, M. Horio, DEM simulation of fluidized beds for gas-phase olefin polymerization, Chem. Eng. Sci. 54 (24) (1999) 5809-5821. [12] M.R. Rahimpour, M. Bayat, Production of ultrapure hydrogen via utilizing fluidization concept from coupling of methanol and benzene synthesis in a hydrogen-permselective membrane reactor, Int. J. Hydrog. Energy 36 (11) (2011) 6616-6627. [13] S. Khajeh, Z. Arab Aboosadi, B. Honarvar, A comparative study between operability of fluidized-bed and fixed-bed reactors to produce synthesis gas through tri-reforming, J. Nat. Gas Sci. Eng. 19 (2014) 152-160. [14] W.W. Li, Y.C. Song, Artificial neural network model of catalytic coal gasification in fixed bed, J. Energy Inst. 105 (2022) 176-183. [15] W.W. Li, Y.C. Song, A comprehensive simulation of catalytic coal gasification in a pressurized jetting fluidized bed, Fuel 317 (2022) 123437. [16] T.M. Ismail, S.W. Banks, Y. Yang, H.P. Yang, Y.Q. Chen, A.V. Bridgwater, K. Ramzy, M. Abd El-Salam, Coal and biomass co-pyrolysis in a fluidized-bed reactor: Numerical assessment of fuel type and blending conditions, Fuel 275 (2020) 118004. [17] M.J. Andrews, P.J. O’Rourke, The multiphase particle-in-cell (MP-PIC) method for dense particulate flows, Int. J. Multiph. Flow 22 (2) (1996) 379-402. [18] D.M. Snider, An incompressible three-dimensional multiphase particle-in-cell model for dense particle flows, J. Comput. Phys. 170 (2) (2001) 523-549. [19] J. Xie, W.Q. Zhong, B.S. Jin, Y.J. Shao, Y.J. Huang, Eulerian-Lagrangian method for three-dimensional simulation of fluidized bed coal gasification, Adv. Powder Technol. 24 (1) (2013) 382-392. [20] S. Kraft, F. Kirnbauer, H. Hofbauer, CPFD simulations of an industrial-sized dual fluidized bed steam gasification system of biomass with 8MW fuel input, Appl. Energy 190 (2017) 408-420. [21] C. Loha, H. Chattopadhyay, P.K. Chatterjee, Three dimensional kinetic modeling of fluidized bed biomass gasification, Chem. Eng. Sci. 109 (2014) 53-64. [22] S.L. Yang, X.H. Liu, S. Wang, CFD simulation of air-blown coal gasification in a fluidized bed reactor with continuous feedstock, Energy Convers. Manag. 213 (2020) 112774. [23] S.L. Yang, X.H. Liu, S. Wang, K.G. Zhang, H. Wang, Eulerian-Lagrangian simulation study of the gas-solid reacting flow in a bubbling fluidized coal gasifier, Chem. Eng. J. 426 (2021) 130825. [24] P. Cai, M. Schiavetti, G. De Michele, G.C. Grazzini, M. Miccio, Quantitative estimation of bubble size in PFBC, Powder Technol. 80 (2) (1994) 99-109. [25] S. Yan, J.S. Zhang, X.Q. Yan, D.F. Pan, H. Ren, X. Qu, Catalytic coal hydrogasification by cobalt-calcium catalyst in a pressurized fluidized bed: Role of hydropyrolysis and catalysis process, J. Anal. Appl. Pyrolysis 135 (2018) 251-259. [26] T. Wang, Z.H. Xia, C.X. Chen, Computational study of bubble coalescence/break-up behaviors and bubble size distribution in a 3-D pressurized bubbling gas-solid fluidized bed of Geldart A particles, Chin. J. Chem. Eng. 44 (2022) 485-496. [27] S. Mori, C.Y. Wen, Estimation of bubble diameter in gaseous fluidized beds, AlChE. J. 21 (1) (1975) 109-115. [28] R.C. Darton, R.D. La Nauze, J.F. Davidson, D. Harrison. Bubble growth due to coalescence in fluidised beds, Trans. I. Chem. E. 55(1977) 274-280. [29] R. Yusuf, M.C. Melaaen, V. Mathiesen, Convective heat and mass transfer modeling in gas-fluidized beds, Chem. Eng. Technol. 28 (1) (2005) 13-24. [30] M.J. Rhodes, X.S. Wang, M. Nguyen, P. Stewart, K. Liffman, Study of mixing in gas-fluidized beds using a DEM model, Chem. Eng. Sci. 56 (8) (2001) 2859-2866. [31] D. Pallares, F. Johnsson, A novel technique for particle tracking in cold 2-dimensional fluidized beds-simulating fuel dispersion, Chem. Eng. Sci. 61 (8) (2006) 2710-2720. [32] R.D. La Nauze, K. Jung, Mass transfer relationships in fluidized-bed combustors, Chem. Eng. Commun. 43 (4-6) (1986) 275-286. [33] L. Zhao, T. Wang, Y.H. Zhang, Z.Y. Tang, Modeling Fischer-Tropsch to olefins in pilot slurry process with a method of multiscale bubbles hybrid injection, Ind. Eng. Chem. Res. 61 (48) (2022) 17674-17685. |