Chinese Journal of Chemical Engineering ›› 2025, Vol. 78 ›› Issue (2): 150-162.DOI: 10.1016/j.cjche.2024.10.027
Previous Articles Next Articles
Gang Hu1, Qinqin Wang1, Mingyuan Zhu2, Lihua Kang1
Received:
2024-07-19
Revised:
2024-09-30
Accepted:
2024-10-07
Online:
2024-12-26
Published:
2025-02-08
Supported by:
Gang Hu1, Qinqin Wang1, Mingyuan Zhu2, Lihua Kang1
通讯作者:
Mingyuan Zhu,E-mail:zhuminyuan@shzu.edu.cn;Lihua Kang,E-mail:kanglihua@shzu.edu.cn
基金资助:
Gang Hu, Qinqin Wang, Mingyuan Zhu, Lihua Kang. Heteropolyacid hosted to nano-silica catalyst for the oxidation of methacrolein[J]. Chinese Journal of Chemical Engineering, 2025, 78(2): 150-162.
Gang Hu, Qinqin Wang, Mingyuan Zhu, Lihua Kang. Heteropolyacid hosted to nano-silica catalyst for the oxidation of methacrolein[J]. 中国化学工程学报, 2025, 78(2): 150-162.
[1] M.J.D. Mahboub, J.L. Dubois, F. Cavani, M. Rostamizadeh, G.S. Patience, Catalysis for the synthesis of methacrylic acid and methyl methacrylate, Chem. Soc. Rev. 47 (20) (2018) 7703-7738. [2] B.H. Wang, H.G. Dong, L. Lu, H.X. Liu, Z.B. Zhang, J. Zhu, Study on the development of high-performance P-Mo-V catalyst and the influence of aldehyde impurities on catalytic performance in selective oxidation of methacrolein to methacrylic acid, Catalysts 11 (3) (2021) 394. [3] S. Knoche, M. Heid, N. Gora, D. Ohlig, J. Steffan, A. Drochner, B. Etzold, B. Albert, H. Vogel, Investigation of the acrolein oxidation on heteropolyacid catalysts by transient response methods, Catal. Sci. Technol. 10 (15) (2020) 5231-5244. [4] S. Illies, B. Kraushaar-Czarnetzki, Processing study on the stability of heteropoly acid catalyst in the oxidation of methacrolein to methacrylic acid, Ind. Eng. Chem. Res. 55 (31) (2016) 8509-8518. [5] Y.L. Cao, L. Wang, L.L. Zhou, B.H. Xu, Y.Y. Diao, S.J. Zhang, A modified heteropoly acid catalyst with cetyltrimethylammonium bromide for methacrolein to methacrylic acid, J. Ind. Eng. Chem. 65 (2018) 254-263. [6] Y.L. Cao, L. Wang, L.L. Zhou, G.J. Zhang, B.H. Xu, S.J. Zhang, Cs(NH4)xH3-xPMo11VO40 catalyzed selective oxidation of methacrolein to methacrylic acid: effects of NH4+ on the structure and catalytic activity, Ind. Eng. Chem. Res. 56 (3) (2017) 653-664. [7] M. Kanno, Y.K. Miura, T. Yasukawa, T. Hasegawa, W. Ninomiya, K. Ooyachi, H. Imai, T. Tatsumi, Y. Kamiya, 11-Molybdo-1-vanadophosphoricacid H4PMo11VO40 supported on ammonia-modified silica as highly active and selective catalyst for oxidation of methacrolein, Catal. Commun. 13 (1) (2011) 59-62. [8] M. Kanno, T. Yasukawa, W. Ninomiya, K. Ooyachi, Y. Kamiya, Catalytic oxidation of methacrolein to methacrylic acid over silica-supported 11-molybdo-1-vanadophosphoric acid with different heteropolyacid loadings, J. Catal. 273 (1) (2010) 1-8. [9] A. Talebian-Kiakalaieh, S. Tarighi, Hierarchical faujasite zeolite-supported heteropoly acid catalyst for acetalization of crude-glycerol to fuel additives, J. Ind. Eng. Chem. 79 (2019) 452-464. [10] R. Ghubayra, C. Nuttall, S. Hodgkiss, M. Craven, E.F. Kozhevnikova, I.V. Kozhevnikov, Oxidative desulfurization of model diesel fuel catalyzed by carbon-supported heteropoly acids, Appl. Catal. B Environ. 253 (2019) 309-316. [11] G.Y. Ryu, H. Jae, K.J. Kim, H. Kim, S. Lee, Y. Jeon, D. Roh, W.S. Chi, Hollow heteropoly acid-functionalized ZIF composite membrane for proton exchange membrane fuel cells, ACS Appl. Energy Mater. 6 (8) (2023) 4283-4296. [12] K.V. Avramidou, F. Zaccheria, S.A. Karakoulia, K.S. Triantafyllidis, N. Ravasio, Esterification of free fatty acids using acidic metal oxides and supported polyoxometalate (POM) catalysts, Mol. Catal. 439 (2017) 60-71. [13] A. Kuvayskaya, S. Garcia, R. Mohseni, A. Vasiliev, Superacidic mesoporous catalysts containing embedded heteropolyacids, Catal. Lett. 149 (7) (2019) 1983-1990. [14] J.R. Li, Z. Yang, S.W. Li, Q.P. Jin, J.S. Zhao, Review on oxidative desulfurization of fuel by supported heteropolyacid catalysts, J. Ind. Eng. Chem. 82 (2020) 1-16. [15] A. Popa, V. Sasca, O. Verdes, P. Barvinschi, I. Holclajtner-Antunovic, Acidic and neutral caesium salts of 12-molybdophosphoric acid supported on SBA-15 mesoporous silica. The influence of Cs concentration and surface coverage on textural and structural properties, Mater. Res. Bull. 50 (2014) 312-322. [16] A.L.P. de Meireles, K.A. da Silva Rocha, E.F. Kozhevnikova, I.V. Kozhevnikov, E.V. Gusevskaya, Heteropoly acid catalysts in Prins cyclization for the synthesis of Florol®, Mol. Catal. 502 (2021) 111382. [17] X.X. Ma, T.T. Wang, M.N. Zhang, W.C. Zhu, Z.S. Zhang, H. Zhang, Heteropoly acid supported on Cu-doped three-dimensionally ordered macroporous SiO2 as efficient catalyst for the selective oxidation of methacrolein, Catal. Lett. 148 (2) (2018) 660-670. [18] H. Kim, J.C. Jung, S.H. Yeom, K.Y. Lee, I.K. Song, Preparation of H3PMo12O40 catalyst immobilized on polystyrene support and its application to the methacrolein oxidation, J. Mol. Catal. A Chem. 248 (1-2) (2006) 21-25. [19] H. Kim, J.C. Jung, D.R. Park, S.H. Baeck, I.K. Song, Preparation of H5PMo10V2O40 (PMo10V2) catalyst immobilized on nitrogen-containing mesoporous carbon (N-MC) and its application to the methacrolein oxidation, Appl. Catal. A Gen. 320 (2007) 159-165. [20] L.L. Zhou, S.S. Zhang, Z.J. Li, J. Scott, Z.K. Zhang, R.J. Liu, J. Yun, Selective oxidation of methacrolein to methacrylic acid over H4PMo11VO40/C3N4-SBA-15, RSC Adv. 9 (58) (2019) 34065-34075. [21] S. Wang, X. Lin, M.Z. Ashfaq, X.F. Zhang, C.C. Zhao, M.M. Sheng, R.K. Yang, Y.R. Pei, H.Y. Gong, Y.J. Zhang, Microwave absorption properties of SiCN ceramics doped with cobalt nanoparticles, J. Mater. Sci. Mater. Electron. 31 (5) (2020) 3803-3816. [22] S.K. Ojha, P.K. Kasanaboina, C. Lewis Reynolds Jr, T.A. Rawdanowicz, Y. Liu, R.M. White, S. Iyer, Incorporation of Be dopant in GaAs core and core-shell nanowires by molecular beam epitaxy, J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 34 (2) (2016) 02L114. [23] E. Rocchini, M. Vicario, J. Llorca, C. de Leitenburg, G. Dolcetti, A. Trovarelli, Reduction and oxygen storage behavior of noble metals supported on silica-doped ceria, J. Catal. 211 (2) (2002) 407-421. [24] R. Klaysri, V. Preechawan, N. Thammachai, P. Praserthdam, O. Mekasuwandumrong, Photocatalytic activity of Nitrogen and Silica doping on TiO2 nanocatalyst and grafted onto PMMA film, Mater. Chem. Phys. 211 (2018) 420-427. [25] N.S. Hassan, A.A. Jalil, I. Hussain, A.A. Fauzi, M.S. Azami, R. Saravanan, N.H.H. Hairom, Intensification of toxic chlorophenolic compounds degradation over efficient microwave-dried silica-doped tetragonal zirconia nanocatalysts, Chem. Eng. Process. Process. Intensif. 165 (2021) 108469. [26] B.H. Wang, Y. Li, Q.W. Zhu, J. Zhu, Z.B. Zhang, J. Ma, Dendritic polyamide-amine modified phosphomolybdovanadic hybrid microspheres as a catalyst for methacrolein to methacrylic acid, Catal. Sci. Technol. 13 (3) (2023) 887-897. [27] G.Q. Luo, L.H. Kang, M.Y. Zhu, B. Dai, Highly active phosphotungstic acid immobilized on amino functionalized MCM-41 for the oxidesulfurization of dibenzothiophene, Fuel Process. Technol. 118 (2014) 20-27. [28] Y.J. Li, S. Wang, Q. Wang, M.Y. Zhu, W.J. Shan, Y.Y. Liu, CsCu0.1H2.9PMo11VO40 catalyst synthesized via a high shear mixer facilitated precipitation method for selective oxidation of methacrolein to methacrylic acid, Catal. Sci. Technol. 13 (6) (2023) 1874-1887. [29] J.Y. Yu, Y.Q. Yang, Y. Chen, L. Wang, G.L. Zhang, C.S. Li, Selective methacrolein oxidation catalyzed with heteropoly compounds: effect of the oxidation state modulated with hydrogen pretreatment, Ind. Eng. Chem. Res. 61 (28) (2022) 10014-10023. [30] Q.W. Zhu, J. Zhu, Y. Li, Z.B. Zhang, B.H. Wang, J. Ma, Kaolin supported heteropoly acid catalysts for methacrolein oxidation: insights into the carrier acidity effect on active components, Appl. Catal. A Gen. 649 (2023) 118942. [31] L.L. Zhou, L. Wang, Y.Y. Diao, R.Y. Yan, S.J. Zhang, Cesium salts supported heteropoly acid for oxidation of methacrolein to methacrylic acid, Mol. Catal. 433 (2017) 153-161. [32] X.J. Zeng, Y.D. Chong, L.L. Zhou, Z.J. Li, P. Yin, Y.Q. Hu, J. Yun, Polymetallic oxygen cluster intercalated expanded graphite for selective oxidation of methacrolein to methacrylic acid, Mol. Catal. 547 (2023) 113394. [33] L.L. Zhou, Y. Sun, B. Li, Z.J. Li, Z.K. Zhang, J. Yun, R.J. Liu, Selective oxidation of methacrolein to methacrylic acid on carbon catalysts, Catal. Commun. 126 (2019) 44-49. [34] Y.L. Cao, L. Wang, B.H. Xu, S.J. Zhang, The Chitin/Keggin-type heteropolyacid hybrid microspheres as catalyst for oxidation of methacrolein to methacrylic acid, Chem. Eng. J. 334 (2018) 1657-1667. [35] S. Ishikawa, N. Noda, M. Wada, S. Tsurumi, W. Ueda, Selective oxidation of methacrolein over crystalline Mo3VOx catalysts and comparison of their catalytic properties with heteropoly acid catalysts, ACS Catal. 10 (18) (2020) 10535-10545. [36] M. Sennerich, P. Weidler, B. Kraushaar-Czarnetzki, Hexagonal Mo/V/W mixed oxide as a catalyst for the partial oxidation of methacrolein to methacrylic acid, Catal. Commun. 141 (2020) 106016. [37] C. Knapp, T. Ui, K. Nagai, N. Mizuno, Stability of iron in the Keggin anion of heteropoly acid catalysts for selective oxidation of isobutane, Catal. Today 71 (1-2) (2001) 111-119. [38] L.L. Zhou, L. Wang, S.J. Zhang, R.Y. Yan, Y.Y. Diao, Effect of vanadyl species in Keggin-type heteropoly catalysts in selective oxidation of methacrolein to methacrylic acid, J. Catal. 329 (2015) 431-440. |
[1] | Ziyang Li, Zhikun Miao, Jie Shen, Jing Wang, Liangliang Lin. Green synthesis of carbon dots by microflow method and their application as sunscreen agent [J]. Chinese Journal of Chemical Engineering, 2025, 77(1): 135-143. |
[2] | Chen Chen, Zeming Yan, Zhuoli Ma, Dianjie Ma, Shijun Xing, Wenping Li, Jiazhi Yang, Qiaofeng Han. Magnetic Fe3O4 nanoparticles supported on carbonized corncob as heterogeneous Fenton catalyst for efficient degradation of methyl orange [J]. Chinese Journal of Chemical Engineering, 2025, 77(1): 144-155. |
[3] | Junzhe Xu, Shuang Liu, Lin Li, Xian Qin, Ruixin Qu, Jinguo Wang, Di Liu, Gaixia Wei. Rational design of nitrogen-doped carbon for palladium catalysts in hydrogenation of hydrazo compounds [J]. Chinese Journal of Chemical Engineering, 2025, 77(1): 156-166. |
[4] | Danyang Zhao, Qiangqiang Xue, Yujun Wang, Guangsheng Luo. Controllable synthesis of hydrogen-bonded organic framework encapsulated enzyme for continuous production of chiral hydroxybutyric acid in a two-stage cascade microreactor [J]. Chinese Journal of Chemical Engineering, 2025, 77(1): 175-184. |
[5] | Qiannan Wang, Aaron S. Pittman, Yan Cao. High-performance red mud as an electrocatalyst for nitrate reduction toward ammonia synthesis [J]. Chinese Journal of Chemical Engineering, 2025, 77(1): 195-202. |
[6] | Yixin Wei, Leyu Shan, Tong Qiu, Diannan Lu, Zheng Liu. Machine learning-assisted retrosynthesis planning: Current status and future prospects [J]. Chinese Journal of Chemical Engineering, 2025, 77(1): 273-292. |
[7] | Jianzhi Wang, Xugen Li, Cheng Zhang, Yuan Pu, Jiawu Liu, Jie Liu, Yanping Liu, Xiao Lin, Faquan Yu. Polygonal mesopores microflower catalysts for the catalytic oxidation of 2-nitro-4-methylsulfonyltoluene to 2-nitro-4-methylsulfonylbenzoic acid in a continuous-flow microreactor [J]. Chinese Journal of Chemical Engineering, 2024, 73(9): 212-221. |
[8] | Hanlin Qian, Jianping Zou, Hongxia Liu, Aishun Ma, Shitong Xu, Ting Li, Sili Ren. Construction of direct-Z-scheme heterojunction photocatalyst of g-C3N4/Ti3C2/TiO2 composite and its degradation behavior for dyes of Rhodamine B [J]. Chinese Journal of Chemical Engineering, 2024, 73(9): 222-234. |
[9] | Maoqiao Xiang, Wenjun Ding, Qinghua Dong, Qingshan Zhu. Synthesis methods and powder quality of titanium monocarbide [J]. Chinese Journal of Chemical Engineering, 2024, 72(8): 10-18. |
[10] | Xueqing Ren, Jiahao Niu, Yan Li, Lei Li, Chao Zhang, Qiang Guo, Qiaoling Zhang, Weizhou Jiao. Photocatalytic ozonation-based degradation of phenol by ZnO-TiO2 nanocomposites in spinning disk reactor [J]. Chinese Journal of Chemical Engineering, 2024, 72(8): 74-84. |
[11] | Tianxiao Huang, Binhang Yan. Evaluation and application of kinetic models for Cu-catalyzed acetylene hydrochlorination [J]. Chinese Journal of Chemical Engineering, 2024, 72(8): 209-219. |
[12] | Feng Chen, Haoyu Li, Xianyan Qiao, Ruoyang Wang, Changyan Hu, Ting Chen, Yifan Niu, Benhe Zhong, Zhenguo Wu, Xiaodong Guo. The chance of sodium titanate anode for the practical sodium-ion batteries [J]. Chinese Journal of Chemical Engineering, 2024, 72(8): 226-244. |
[13] | Yuting Zhang, Yuwei Tang, Ruiping Yan, Shuang Liang, Zhongmou Liu, Yadong Yang. Green-synthesized, biochar-supported nZVI from mango kernel residue for aqueous hexavalent chromium removal: Performance, mechanism and regeneration [J]. Chinese Journal of Chemical Engineering, 2024, 71(7): 91-101. |
[14] | Aishun Ma, Hanlin Qian, Hongxia Liu, Sili Ren. Preparation of Kω-g-C3N4 composite loaded on magnetic attapulgite and its degradation performance for malachite green [J]. Chinese Journal of Chemical Engineering, 2024, 71(7): 110-121. |
[15] | Hai Cao, Haibin Yang, Yanxiong Fang, Yuandi Zeng, Xiaolan Cai, Jingjing Ma. Study on trifluoromethanesulfonic acid-promoted synthesis of daidzein: Process optimization and reaction mechanism [J]. Chinese Journal of Chemical Engineering, 2024, 71(7): 132-139. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 50
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 22
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||