[1] Z.B. Liang, C. Qu, W.H. Guo, R.Q. Zou, Q. Xu, Pristine metal-organic frameworks and their composites for energy storage and conversion, Adv. Mater. 30 (37) (2018) e1702891. [2] D.Y. Xu, M.X. Liang, S. Qi, W.W. Sun, L.P. Lv, F.H. Du, B.F. Wang, S.Q. Chen, Y. Wang, Y. Yu, The progress and prospect of tunable organic molecules for organic lithium-ion batteries, ACS Nano 15 (1) (2021) 47-80. [3] X.H. Zhang, Z. Li, L.G. Luo, Y.L. Fan, Z.Y. Du, A review on thermal management of lithium-ion batteries for electric vehicles, Energy 238 (2022) 121652. [4] X. Xiao, L.L. Zou, H. Pang, Q. Xu, Synthesis of micro/nanoscaled metal-organic frameworks and their direct electrochemical applications, Chem. Soc. Rev. 49 (1) (2020) 301-331. [5] L.P. Zhang, X.L. Li, M.R. Yang, W.H. Chen, High-safety separators for lithium-ion batteries and sodium-ion batteries: advances and perspective, Energy Storage Mater. 41 (2021) 522-545. [6] D. Wenlong Cai, D. Chong Yan, Y.X. Yao, L. Xu, X.R. Chen, P. Jia-Qi Huang, P. Qiang Zhang, The boundary of lithium plating in graphite electrode for safe lithium-ion batteries, Angew. Chem. Int. Ed. 60 (23) (2021) 13007-13012. [7] D.K. Son, J. Kim, M.R. Raj, G. Lee, Elucidating the structural redox behaviors of nanostructured expanded graphite anodes toward fast-charging and high-performance lithium-ion batteries, Carbon 175 (2021) 187-201. [8] L.H. Dai, M.F. Xie, J.Y. Liu, H.J. Peng, A review of MOFs and their derivatives for lithium ion battery: structural design, synthesis strategy and mechanism, J. Ind. Eng. Chem. 130 (2024) 125-140. [9] C. Cong, H.B. Ma, Advances of electroactive metal-organic frameworks, Small 19 (15) (2023) e2207547. [10] Z.J. Liu, F.F. Zheng, W.W. Xiong, X.G. Li, A.H. Yuan, H. Pang, Strategies to improve electrochemical performances of pristine metal-organic frameworks-based electrodes for lithium/sodium-ion batteries, SmartMat 2 (4) (2021) 488-518. [11] G.J. Song, Y.X. Shi, S. Jiang, H. Pang, Recent progress in MOF-derived porous materials as electrodes for high-performance lithium-ion batteries, Adv. Funct. Mater. 33 (42) (2023) 2303121. [12] C. Li, L. Liu, J.L. Kang, Y. Xiao, Y.Q. Feng, F.F. Cao, H. Zhang, Pristine MOF and COF materials for advanced batteries, Energy Storage Mater. 31 (2020) 115-134. [13] L. Zuo, S.H. Chen, J.F. Wu, L. Wang, H.Q. Hou, Y.H. Song, Facile synthesis of three-dimensional porous carbon with high surface area by calcining metal-organic framework for lithium-ion batteries anode materials, RSC Adv. 4 (106) (2014) 61604-61610. [14] C. Li, T.Q. Chen, W.J. Xu, X.B. Lou, L.K. Pan, Q. Chen, B.W. Hu, Mesoporous nanostructured Co3O4 derived from MOF template: a high-performance anode material for lithium-ion batteries, J. Mater. Chem. A 3 (10) (2015) 5585-5591. [15] X.X. Li, F.Y. Cheng, S.N. Zhang, J. Chen, Shape-controlled synthesis and lithium-storage study of metal-organic frameworks Zn4O(1, 3, 5-benzenetribenzoate)2, J. Power Sources 160 (1) (2006) 542-547. [16] K. Saravanan, M. Nagarathinam, P. Balaya, J.J. Vittal, Lithium storage in a metal organic framework with diamondoid topology-a case study on metal formates, J. Mater. Chem. 20 (38) (2010) 8329-8335. [17] L. Gou, L.M. Hao, Y.X. Shi, S.L. Ma, X.Y. Fan, L. Xu, D.L. Li, K. Wang, One-pot synthesis of a metal-organic framework as an anode for Li-ion batteries with improved capacity and cycling stability, J. Solid State Chem. 210 (1) (2014) 121-124. [18] X.B. Lou, H.P. Hu, C. Li, X.S. Hu, T. Li, M. Shen, Q. Chen, B.W. Hu, Capacity control of ferric coordination polymers by zinc nitrate for lithium-ion batteries, RSC Adv. 6 (89) (2016) 86126-86130. [19] D. Zhou, J.F. Ni, L. Li, Self-supported multicomponent CPO-27 MOF nanoarrays as high-performance anode for lithium storage, Nano Energy 57 (2019) 711-717. [20] Y.Q. Ning, X.B. Lou, C. Li, X.S. Hu, B.W. Hu, Ultrathin cobalt-based metal-organic framework nanosheets with both metal and ligand redox activities for superior lithium storage, Chemistry 23 (63) (2017) 15984-15990. [21] C. Li, X.S. Hu, W. Tong, W.S. Yan, X.B. Lou, M. Shen, B.W. Hu, Ultrathin manganese-based metal-organic framework nanosheets: low-cost and energy-dense lithium storage anodes with the coexistence of metal and ligand redox activities, ACS Appl. Mater. Interfaces 9 (35) (2017) 29829-29838. [22] J.L. Niu, H.J. Peng, C.H. Zeng, X.M. Lin, P. Sathishkumar, Y.P. Cai, A.W. Xu, An efficient multidoped Cu0.39Zn0.14Co2.47O4-ZnO electrode attached on reduced graphene oxide and copper foam as superior lithium-ion battery anodes, Chem. Eng. J. 336 (2018) 510-517. [23] N. Sammawipawekul, N. Kaeosamut, T. Autthawong, A. Watwiangkham, S. Suthirakun, S. Wannapaiboon, N. Mahamai, T. Sarakonsri, Y. Chimupala, S. Yimklan, Isostructural dual-ligand-based MOFs with different metal centers in response to diverse capacity lithium-ion battery anode, Chem. Eng. J. 482 (2024) 148904. [24] P. Xiqiang Tian, P. Yanping Dong, Synthesis, structure, and magnetic properties of a three-dimensional cobalt carboxylate metal-organic framework, ChemistrySelect 4 (43) (2019) 12608-12611. [25] H.L. Fei, X. Liu, Z.W. Li, W.J. Feng, Synthesis of manganese coordination polymer microspheres for lithium-ion batteries with good cycling performance, Electrochim. Acta 174 (2015) 1088-1095. [26] C. Li, X.S. Hu, X.B. Lou, Q. Chen, B.W. Hu, Bimetallic coordination polymer as a promising anode material for lithium-ion batteries, Chem. Commun. 52 (10) (2016) 2035-2038. [27] X.B. Lou, Y.Q. Ning, C. Li, X.S. Hu, M. Shen, B.W. Hu, Bimetallic zeolite imidazolate framework for enhanced lithium storage boosted by the redox participation of nitrogen atoms, Sci. China Mater. 61 (8) (2018) 1040-1048. [28] L. Li, H.L. Wang, Z.J. Xie, C.H. An, G.X. Jiang, Y.J. Wang, 3D graphene-encapsulated nearly monodisperse Fe3O4 nanoparticles as high-performance lithium-ion battery anodes, J. Alloys Compd. 815 (2020) 152337. |