[1] National Minerals Information Center, Mineral commodity summaries 2023, U.S. Geological Survey, 2023[2023-06-20], https://pubs.usgs.gov/periodicals/mcs2023/mcs2023.pdf. [2] L.Y. Zhou, C.J. Li, J.F. White, R.D. Johnson, Synergism between calcium nitrate applications and fungal endophytes to increase sugar concentration in Festuca sinensis under cold stress, PeerJ 9 (2021) e10568. [3] Y. Raiymbekov, U. Besterekov, P. Abdurazova, U. Nazarbek, Review of methods and technologies for the enrichment of low-grade phosphorites, Rev. Inorg. Chem. 42 (4) (2022) 385-395. [4] Y. Vetsner, V. Kazakov, V. Doronina, S. Avina, D. Deineka, O. Baturin, R. Paleckiene, To the question of using of low-grade phosphate rock from Synycheno-Yaremivske field of the Iziumskyi district, IOP Conf. Ser.: Earth Environ. Sci. 970 (1) (2022) 012016. [5] I. Aarab, M. Derqaoui, K. El Amari, A. Yaacoubi, A. Abidi, A. Etahiri, A. Bacaoui, Flotation tendency assessment through DOE: case of low-grade Moroccan phosphate ore, Min. Metall. Explor. 39 (4) (2022) 1721-1741. [6] T. Aleksandrova, A. Elbendari, N. Nikolaeva, Beneficiation of a low-grade phosphate ore using a reverse flotation technique, Miner. Process. Extr. Metall. Rev. 43 (1) (2022) 22-27. [7] Y. Raiymbekov, P. Abdurazova, U. Nazarbek, Enrichment of low-grade phosphorites by the selective leaching method, Green Process. Synth. 12 (1) (2023): 81550. [8] S.S. Biswas, D.R. Biswas, R. Pal, Oxalic acid treated low grade rock phosphate can be a potent supplemental P source to grow wheat in inceptisol, J. Plant Nutr. 46 (11) (2023) 2581-2594. [9] A. Tumbure, M.B. Bretherton, P. Bishop, M.J. Hedley, Phosphorus recovery from an igneous phosphate rock using organic acids and pyrolysis condensate, Sci. Afr. 15 (2022) e01098. [10] J.H. Wu, Y. Xiao, X.S. Yang, D.H. Xu, Z.Y. Zhang, Y.J. Zhong, X.L. Wang, Leaching kinetics for magnesium extraction from phosphate rock in the nitric acid method, Miner. Eng. 189 (2022) 107894. [11] B. Wang, Z.X. Zhou, D.H. Xu, J.H. Wu, X.S. Yang, Z.Y. Zhang, Z.J. Yan, A new enrichment method of medium-low grade phosphate ore with high silicon content, Miner. Eng. 181 (2022) 107548. [12] Y. Xing, Z.L. Zhu, F. Wang, X. Zhang, B.Y. Li, Z.X. Liu, X.X. Wu, S.F. Ge, Y.M. Jiang, Role of calcium as a possible regulator of growth and nitrate nitrogen metabolism in apple dwarf rootstock seedlings, Sci. Hortic. 276 (2021) 109740. [13] B. Motesharezadeh, Q.F. Ma, A.R. Tabibi, R. Fatemi, F. Bekhradi, Nutritional, yield, and quality responses of apple, pear, and cherry to calcium nitrate application, Commun. Soil Sci. Plant Anal. 52 (10) (2021) 1132-1148. [14] Z.Y. Lu, Y.Y. Wang, F. Degryse, C.D. Huang, C.H. Hou, L.Q. Wu, R.F. Jiang, M.J. McLaughlin, F.S. Zhang, Magnesium-fortified phosphate fertilizers improve nutrient uptake and plant growth without reducing phosphorus availability, Pedosphere 32 (5) (2022) 744-751. [15] Z.H. Yang, W.L. Zhou, B.R. Sun, Z. Rengel, G. Feng, L. Zhang, Combined application of calcium-magnesium phosphate fertilizer with soluble phosphorus improves maize growth in a calcareous soil, J. Soil Sci. Plant Nutr. 23 (1) (2023) 778-789. [16] C.G. Xie, T. Zhang, X.L. Wang, B.H. Zhong, S.W. Tang, Solid-liquid phase equilibria in aqueous solutions of four common fertilizers at 303.2 K and atmospheric pressure, Fluid Phase Equilib. 474 (2018) 131-140. [17] O. Zayed, O.A. Hewedy, A. Abdelmoteleb, M. Ali, M.S. Youssef, A.F. Roumia, D. Seymour, Z.C. Yuan, Nitrogen journey in plants: from uptake to metabolism, stress response, and microbe interaction, Biomolecules 13 (10) (2023) 1443. [18] S.M. Yahaya, A. Ahmad Mahmud, M. Abdullahi, A. Haruna, Recent advances in the chemistry of nitrogen, phosphorus and potassium as fertilizers in soil: a review, Pedosphere 33 (3) (2023) 385-406. [19] Y.L. Yang, T. Zhang, X.L. Wang, S.W. Tang, An investigation on the solid-liquid phase equilibrium of the quaternary system KH2PO4-H3PO4-CH2OHCH2OH-H2O, Fluid Phase Equilib. 464 (2018) 12-21. [20] T. Zhang, Y.L. Yang, L. Lv, X.L. Wang, B.H. Zhong, S.W. Tang, Preparation of potassium dihydrogen phosphate with N-methyldiethanolamine as extractant, Chem. Eng. Process. Process. Intensif. 129 (2018) 10-16. [21] X. Yin, D.D. Li, Y.Q. Tan, X.Y. Wu, X.L. Yu, D.W. Zeng, Solubility phase diagram of the Ca(NO3)2-Mg(NO3)2-H2O system, J. Chem. Eng. Data 59 (12) (2014) 4026-4030. [22] N.S. Kistanova, A.R. Mukminova, I.N. Koneva, O.S. Kudryashova, Phase equilibria in the KNO3-Ca(NO3)2-H2O system at 25℃, Russ. J. Inorg. Chem. 66 (11) (2021) 1736-1742. [23] GB/T 20784-2018. Potassium nitrate for agricultural use. China, (2018). [24] E. R. Chairman, EURACHEM/CITAC Guide: Quantifying Uncertainty in Analytical Measurement, third ed., 2012 Eurachem www.eurachem.org. [25] GB/T13025.6-2012. General test methods for salt industry - Determination of calcium and magnesium. China, (2012). [26] T.L. Deng, H. Zhou, X. Chen, Salt-water system phase diagrams and applications, 2nd ed., Chemical Industry Press, Beijing, 2013. [27] H. Schott, A mathematical extrapolation for the method of wet residues, J. Chem. Eng. Data 6 (3) (1961) 324. [28] J. Long, J.H. Tang, Y.K. You, L.M. Guo, K. Chen, Phase equilibrium in the aqueous ternary system KH2PO4+ KCl +H2O at (288.15 and 303.15) K, J. Chem. Eng. Data 60 (6) (2015) 1906-1909. [29] D.R. Lide, CRC Handbook of chemistry and physics, 82nd ed., CRC Press, Florida, 2001. [30] J. Dean, Lange’s handbook of chemistry, 50th ed., McGraw-Hill Professional, New York, 1999. [31] D.W. Zeng, H.X. Liu, Q.Y. Chen, Simulation and prediction of solubility phase diagram for the separation of MgCl2 from LiCl brine using HCl as a salting-out agent, Hydrometallurgy 89 (1-2) (2007) 21-31. [32] B.H. Li, D.W. Zeng, X. Yin, Q.Y. Chen, Theoretical prediction and experimental determination of room-temperature phase change materials using hydrated salts as agents, J. Therm. Anal. Calorim. 100 (2) (2010) 685-693. [33] D.W. Zeng, W.F. Xu, W. Voigt, X. Yin, Thermodynamic study of the system (LiCl+CaCl2+H2O), J. Chem. Thermodyn. 40 (7) (2008) 1157-1165. [34] D.W. Zeng, J.W. Ming, W. Voigt, Thermodynamic study of the system (LiCl+LiNO3+H2O), J. Chem. Thermodyn. 40 (2) (2008) 232-239. [35] M. Abraham, M.C. Abraham, Electrolyte and water activities in very concentrated solutions, Electrochim. Acta 46 (1) (2000) 137-142. [36] R.H. Stokes, R.A. Robinson, Ionic hydration and activity in electrolyte solutions, J. Am. Chem. Soc. 70 (5) (1948) 1870-1878. [37] M.R. Ally, J. Braunstein, Statistical mechanics of multilayer adsorption: electrolyte and water activities in concentrated solutions, J. Chem. Thermodyn. 30 (1) (1998) 49-58. [38] E. Kristiansen, Molten salt hydrates for heat storage applications, in, Master’s Thesis, University of Science and Technology, Trondheim, 1994. [39] W. Voigt, Calculation of salt activities in molten salt hydrates applying the modified BET equation, I: Binary systems, Monatsh. Fur Chem. / Chem. Mon. 124 (8) (1993) 839-848. [40] D.W. Zeng, W. Voigt, Phase diagram calculation of molten salt hydrates using the modified BET equation, Calphad 27 (3) (2003) 243-251. |