Chinese Journal of Chemical Engineering ›› 2025, Vol. 79 ›› Issue (3): 260-268.DOI: 10.1016/j.cjche.2024.11.018
Jing He1, Maoding Cheng1,2, Qinglong Jiang2, Subramania Angaiah3, Minjie Shi1, Chao Yan1
Received:
2024-09-01
Revised:
2024-10-19
Accepted:
2024-11-12
Online:
2025-01-25
Published:
2025-03-28
Supported by:
Jing He1, Maoding Cheng1,2, Qinglong Jiang2, Subramania Angaiah3, Minjie Shi1, Chao Yan1
通讯作者:
Minjie Shi,E-mail:shiminjie@just.edu.cn;Chao Yan,E-mail:chaoyan@just.edu.cn
基金资助:
Jing He, Maoding Cheng, Qinglong Jiang, Subramania Angaiah, Minjie Shi, Chao Yan. Noncovalently functionalized organic graphene aerogel composite for high-performance proton storage[J]. Chinese Journal of Chemical Engineering, 2025, 79(3): 260-268.
Jing He, Maoding Cheng, Qinglong Jiang, Subramania Angaiah, Minjie Shi, Chao Yan. Noncovalently functionalized organic graphene aerogel composite for high-performance proton storage[J]. 中国化学工程学报, 2025, 79(3): 260-268.
[1] D. Larcher, J.M. Tarascon, Towards greener and more sustainable batteries for electrical energy storage, Nat. Chem., 7(1) (2015) 19-29. [2] J. Sills, X.P. Shi, Y.P. Sun, Y.F. Shen, China's ambitious energy transition plans, Science, 373(6551) (2021) 170-170. [3] Y.X. Li, L.J. Liu, C. Liu, Y. Lu, R.J. Shi, F.J. Li, J. Chen, Rechargeable aqueous polymer-air batteries based on polyanthraquinone anode, Chem, 5(8) (2019) 2159-2170. [4] Y. Chen, K. Fan, Y.B. Gao, C.L. Wang, Challenges and perspectives of organic multivalent metal-ion batteries, Adv. Mater., 34(52) (2022) 2200662. [5] R. Shen, S. Niu, G. Zhu, K. Wu and H. Zheng, Mechanical behavior analysis of high power commercial lithium-ion batteries, Chin. J. Chem. Eng., 58 (2023) 315-322. [6] X. Liu, Z. Gao, J. Cheng, J. Gong and J. Wang, Research progress on preparation and purification of fluorine-containing chemicals in lithium-ion batteries, Chin. J. Chem. Eng., 41 (2022) 73-84. [7] L.W. Jiang, Y.X. Lu, C.L. Zhao, L.L. Liu, J.N. Zhang, Q.Q. Zhang, X. Shen, J.M. Zhao, X.Q. Yu, H. Li, X.J. Huang, L.Q. Chen, Y.-S. Hu, Building aqueous K-ion batteries for energy storage, Nat. Energy, 4(6) (2019) 495-503. [8] X. Wang, X. Qin, Q. Lu, M. Han, A. Omar and D. Mikhailova, Mixed phase sodium manganese oxide as cathode for enhanced aqueous zinc-ion storage, Chin. J. Chem. Eng., 28 (2020) 2214-2220. [9] Y.C. Tang, X.J. Li, H.M. Lv, W.L. Wang, Q. Yang, C.Y. Zhi, H.F. Li, High-energy aqueous magnesium hybrid full batteries enabled by carrier-hosting potential compensation, Angew. Chem. Int. Ed., 60(10) (2021) 5443-5452. [10] M. Li, X.P. Wang, J.S. Meng, C.L. Zuo, B. Wu, C. Li, W. Sun, L.Q. Mai, Comprehensive understandings of hydrogen bond chemistry in aqueous batteries, Adv. Mater.,36 (2024) 2308628. [11] G. Li, L. Sun, S. Zhang, C. Zhang, H. Jin, K. Davey, G. Liang, S. Liu, J. Mao, Z. Guo, Developing cathode materials for aqueous zinc ion batteries: Challenges and practical prospects, Adv. Funct. Mater., 34 (2024) 2301291. [12] C. Deng, Y. Li, J. Huang, Building smarter aqueous batteries, Small Methods, 8 (2024) 2300832. [13] T.J. Sun, H.H. Du, S.B. Zheng, J.Q. Shi, Z.L. Tao, High power and energy density aqueous proton battery operated at -90 ℃, Adv. Funct. Mater., 31(16) (2021) 2010127. [14] Y.W. Deng, Z. Cao, L.S. Wang, Y.L. Zhou, S.H. Fu, Y.H. Peng, Y.L. Yin, D. Li, W.K. Wang, W.C. Zhou, D.S. Tang, Ultrafast hydrogen-ion storage in MoO3 nanoribbons, Solid State Ionics, 353 (2020) 115380. [15] T.J. Sun, C. Liu, X.F. Xu, Q.S. Nian, S.B. Zheng, X.S. Hou, J. Liang, Z.L. Tao, Insights into the hydronium-ion storage of alloxazine in mild electrolyte, J. Mater. Chem. A, 8(42) (2020) 21983-21987. [16] A.Q. Zhang, R. Zhao, Y.H. Wang, J.S. Yue, J.J. Yang, X.R. Wang, C. Wu, Y. Bai, Hybrid superlattice-triggered selective proton grotthuss intercalation in δ-MnO2 for high-performance Zinc-ion battery, Angew. Chem. Int. Ed., 62(51) (2023) e202313163. [17] S. Minami, R. Jinnouchi, Accelerating anhydrous proton conduction via anion rotation and hydrogen bond recombination: a machine-learning molecular dynamics, J. Mater. Chem. A, 11(30) (2023) 16104-16114. [18] P. Yang, Z.Z. Wu, S.Y. Wang, M. Li, H. Chen, S.S. Qian, M.T. Zheng, Y. Wang, S. Li, J.X. Qiu, S.Q. Zhang, Synergetic coupling of redox-active sites on organic electrode material for robust and high-performance sodium-ion storage, Angew. Chem. Int. Ed., 62(49) (2023) e202311460. [19] Y. Chen, H.C. Dai, K. Fan, G.Q. Zhang, M. Tang, Y.B. Gao, C.Y. Zhang, L.N. Guan, M.L. Mao, H. Liu, T.Y. Zhai, C.L. Wang, A recyclable and scalable high-capacity organic battery, Angew. Chem. Int. Ed., 62(27) (2023) e202302539. [20] Y. Lu, J. Chen, Prospects of organic electrode materials for practical lithium batteries, Nat. Rev. Chem., 4(3) (2020) 127-142. [21] M. Tang, S.L. Zhu, Z. Liu, C. Jiang, Y.C. Wu, H.Y. Li, B. Wang, E. Wang, J. Ma, C.L. Wang, Tailoring π-conjugated systems: from π-π stacking to high-rate-performance organic cathodes, Chem, 4(11) (2018) 2600-2614. [22] C.L. Wang, Y. Xu, Y.G. Fang, M. Zhou, L.Y. Liang, S. Singh, H.P. Zhao, A. Schober, Y. Lei, Extended π-conjugated system for fast-charge and -discharge sodium-ion batteries, J. Am. Chem. Soc., 137(8) (2015) 3124-3130. [23] Y. Chen, C.L. Wang, Designing high performance organic batteries, Acc. Chem. Res., 53(11) (2020) 2636-2647. [24] P. Sachan, P. Makkar, A. Malik, P. Mondal, “All-organic” electrode materials toward high-performing rigid to flexible supercapacitor devices, J. Mater. Chem. C, 12 (2024) 13639-13650. [25] T.Y. Liang, Z.X. Chen, J.X. Yang, Y.H. Xu, Y.S. Li, High-performance p-type organic electrode materials with oxygen atoms as active centers enabled by molecular design and in situ electropolymerization, Chem. Eng. J., 498 (2024) 155226. [26] Y.L. Lin, H.L. Cui, C. Liu, R. Li, S.P. Wang, G.M. Qu, Z.Q. Wei, Y.H. Yang, Y.X. Wang, Z.J. Tang, H.F. Li, H.Y. Zhang, C.Y. Zhi, H.M. Lv, A covalent organic framework as a long-life and high-rate anode suitable for both aqueous acidic and alkaline batteries, Angew. Chem. Int. Ed., 62(14) (2023) e202218745. [27] T.J. Sun, W.J. Zhang, Q.S. Nian, Z.L. Tao, Proton-insertion dominated polymer cathode for high-performance aqueous Zinc-ion battery, Chem. Eng. J., 452 (2023) 139324. [28] Z. Su, J.Q. Tang, J.B. Chen, H.C. Guo, S.C. Wu, S.Y. Yin, T.W. Zhao, C. Jia, Q.T. Meyer, A. Rawal, J.M. Ho, Y. Fang, C. Zhao, Co-insertion of water with protons into organic electrodes enables high-rate and high-capacity proton batteries, Small Struct., 4(3) (2023) 2200257. [29] G.J. Yang, Y.X. Zhu, Q. Zhao, Z.M. Hao, Y. Lu, Q. Zhao, J. Chen, Advanced organic electrode materials for aqueous rechargeable batteries, Sci. China Chem., 67 (2024) 137-164. [30] D.J. Li, Y.X. Guo, C.X. Zhang, X.H. Chen, W.S. Zhang, S.L. Mei, C.J. Yao, Unveiling organic electrode materials in aqueous zinc-ion batteries: From structural design to electrochemical performance, Nano-Micro Lett., 16 (2024) 194. [31] Y.H. Tong, Y. Wei, A. Song, Y.Y. Ma, J.P. Yang, Organic electrode materials for dual-ion batteries, ChemSusChem, 17 (2024) e202301468. [32] W.P. Li, W. Xie, F. Shao, J. Qian, S.T. Han, P. Wen, J. Lin, M. Chen, X.R. Lin, Molecular engineering of interplanar spacing via π-conjugated phenothiazine linkages for high-power 2D covalent organic framework batteries, Chem, 9(1) (2023) 117-129. [33] Q. Wang, Y. Liu, P. Chen, Phenazine-based organic cathode for aqueous zinc secondary batteries, J. Power Sources, 468 (2020) 228401. [34] C.X. Peng, G.-H. Ning, J. Su, G.M. Zhong, W. Tang, B.B. Tian, C.L. Su, D.Y. Yu, L.H. Zu, J.H. Yang, M.-F. Ng, Y.-S. Hu, Y. Yang, M. Armand, K.P. Loh, Reversible multi-electron redox chemistry of π-conjugated N-containing heteroaromatic molecule-based organic cathodes, Nat. Energy, 2(7) (2017) 17074. [35] H. Zhang, S.J. Xie, Z.Y. Cao, D.X. Xu, L.P. Wang, H.Y. Fang, J.F. Shen, M.X. Ye, Extended π-conjugated system in organic cathode with active C=N bonds for driving aqueous Zinc-ion batteries, ACS Appl. Energy Mater., 4(1) (2021) 655-661. [36] J.Q. Wang, K.Z. Tee, Y.H. Lee, S.N. Riduan, Y.G. Zhang, Hexaazatriphenylene derivatives/GO composites as organic cathodes for lithium ion batteries, J. Mater. Chem. A, 6(6) (2018) 2752-2757. [37] X. Wang, Z. Zhou, X.N. Lin, Z.X. Pei, D. Liu, S.L. Zhao, Nanostructured hexaazatrinaphthalene based polymers for advanced energy conversion and storage, Chem. Eng. J., 427 (2022) 130995. [38] Z.H. Li, J. Tan, X.D. Zhu, S.J. Xie, H.Y. Fang, M.X. Ye, J.F. Shen, High capacity and long-life aqueous Zinc-ion battery enabled by improving active sites utilization and protons insertion in polymer cathode, Energy Storage Mater., 51 (2022) 294-305. [39] B. Liu, R. Bo, M. Taheri, I. Di Bernardo, N. Motta, H. Chen, T. Tsuzuki, G. Yu, A. Tricoli, Metal-organic frameworks/conducting polymer hydrogel integrated three-dimensional free-standing monoliths as ultrahigh loading Li-S battery electrodes, Nano Lett., 19(7) (2019) 4391-4399. [40] C.X. Li, J. Yang, P. Pachfule, S. Li, M.-Y. Ye, J. Schmidt, A. Thomas, Ultralight covalent organic framework/graphene aerogels with hierarchical porosity, Nat. Commun., 11(1) (2020) 4712. [41] A. Majumdar, S. Das, T. Shripathi, R. Hippler, Chemical synthesis and surface morphology of amorphous hydrogenated carbon nitride film deposited by N2/CH4 dielectric barrier discharge plasma, Compos. Interfaces, 19 (2012) 10. [42] N.N. Liu, X. Wu, Y. Zhang, Y.Y. Yin, C.Z. Sun, Y.C. Mao, L.S. Fan, N.Q. Zhang, Building high rate capability and ultrastable dendrite-free organic anode for rechargeable aqueous zinc batteries, Adv. Sci., 7(14) (2020) 2000146. [43] Z.Y. Song, L. Miao, H. Duan, L. Ruhlmann, Y.K. Lv, D.Z. Zhu, L.C. Li, L.H. Gan, M.X. Liu, Anionic Co-insertion charge storage in dinitrobenzene cathodes for high-performance aqueous Zinc-organic batteries, Angew. Chem. Int. Ed., 61(35) (2022) e202208821. [44] N.T. Chen, J. He, H.Y. Xuan, J. Jin, K. Yu, M.J. Shi, C. Yan, Dual-functional Polyindole/MXene composite for superior proton storage and corrosion protection, Composites, Part B, 270 (2024) 111145. [45] C. Strietzel, M. Sterby, H. Huang, M. Stroemme, R. Emanuelsson, M. Sjodin, An An aqueous conducting redox-polymer-based proton battery that can withstand rapid constant-voltage charging and sub-zero temperatures, Angew. Chem. Int. Ed., 59(24) (2020) 9631-9638. [46] T.J. Sun, H.H. Du, S.B. Zheng, J.Q. Shi, X.M. Yuan, L. Li, Z.L. Tao, Bipolar organic polymer for high performance symmetric aqueous proton battery, Small Methods, 5(8) (2021) 2100367. [47] J. Qiao, M. Qin, Y.-M. Shen, J.Y. Cao, Z.D. Chen, J.A. Xu, A rechargeable aqueous proton battery based on a dipyridophenazine anode and an indium hexacyanoferrate cathode, Chem. Commun., 57(35) (2021) 4307-4310. [48] X.L. Wang, J. Zhou, W.H. Tang, Poly(dithieno[3,2-b:2’,3’-d]pyrrole) twisting redox pendants enabling high current durability in all-organic proton battery, Energy Storage Mater., 36 (2021) 1-9. [49] M.H. Zhu, L. Zhao, Q. Ran, Y.C. Zhang, R.C. Peng, G.Y. Lu, X.T. Jia, D.M. Chao, C.Y. Wang, Bioinspired catechol-grafting PEDOT cathode for an all-polymer aqueous proton battery with high voltage and outstanding rate capacity, Adv. Sci., 9(4) (2022) 2103896. [50] K.C.S. Lakshmi, B. Vedhanarayanan, H.-Y. Cheng, X. Ji, H.-H. Shen, T.-W. Lin, Molecularly engineered organic copolymers as high capacity cathode materials for aqueous proton battery operating at sub-zero temperatures, J. Colloid Interface Sci., 619 (2022) 123-131. [51] J.M.C. Puguan, W.-J. Chung, H. Kim, Ion-conductive and transparent PVDF-HFP/silane-functionalized ZrO2 nanocomposite electrolyte for electrochromic applications, Electrochim. Acta, 196 (2016) 236-244. [52] L. Zhang, D.S. Yang, Lilei Miao, C.M. Zhang, J.X. Li, J.W. Wen, T.T. Cao, G.Y. Huang, S.M. Xu, Cation-doped LiNi0.8Co0.1Mn0.1O2 cathode with high rate performance, Chin. J. Chem. Eng., 70(6) (2024) 139-148. [53] P. Xiao, N.T. Chen, J.J. Liu, L.H. Yang, D.B. Chen, M.J. Shi, Facile self-assembly fabrication of anticorrosive imine-based composite material for excellent protective coatings, Prog. Org. Coat., 186 (2024) 108017. [54] R.J. Shi, L.J. Liu, Y. Lu, Y.X. Li, S.B. Zheng, Z.H. Yan, K. Zhang, J. Chen, In situ polymerized conjugated Poly(pyrene-4,5,9,10-tetraone)/carbon nanotubes composites for high-performance cathode of sodium batteries, Adv. Energy Mater., 11(6) (2021) 2002917. |
[1] | Jing He, Hongye Xuan, Jing Jin, Ke Yu, Changyao Liyang, Lintong Hu, Minjie Shi, Chao Yan. Synergistically constructed lamination-like network of redox-active polyimide and MXene via π-π interactions for aqueous NH4+ storage [J]. Chinese Journal of Chemical Engineering, 2024, 71(7): 217-224. |
[2] | Jibing Qi, Youzhi Liu, Yandong Liu. Devolatilization of high viscous fluids with high gravity technology [J]. Chinese Journal of Chemical Engineering, 2024, 71(7): 249-257. |
[3] | Chao Gao, Feng Jiang, Benguo Zhang, Mingchuan Shen, Yuguo Zhang. Preparation of coconut oil/aluminum nitride/expanded graphite composite phase change materials with high thermal conductivity and stable shape for thermal energy storage [J]. Chinese Journal of Chemical Engineering, 2024, 76(12): 272-280. |
[4] | Minjie Shi, Nianting Chen, Yue Zhao, Cheng Yang, Chao Yan. Facile wet-chemical fabrication of bi-functional coordination polymer nanosheets for high-performance energy storage and anti-corrosion engineering [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 118-127. |
[5] | Xinyu Yang, Zezhi Chen, Huijuan Gong. Coking of Pt/γ-Al2O3 catalyst in landfill gas deoxygen and its effects on catalytic performance [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 224-232. |
[6] | Jianhui Zhou, Guohao Du, Jianfeng Hu, Xin Lai, Shan Liu, Zhengguo Zhang. The establishment of Boron nitride@sodium alginate foam/polyethyleneglycol composite phase change materials with high thermal conductivity, shape stability, and reusability [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 11-21. |
[7] | Hongru Zhang, Yusen Chen, Haiyang Cheng, Yangyang Wang, Peizhe Cui, Shiqing Zheng, Zhaoyou Zhu, Yinglong Wang, Yanyue Lu, Jun Gao. Comprehensive analysis on the economy and energy demand of pressure-swing distillation and pervaporation for separating waste liquid containing multiple components [J]. Chinese Journal of Chemical Engineering, 2023, 63(11): 12-20. |
[8] | Zhihao Zhang, Danyang Song, Hengxing Bao, Xiang Ling, Xiaogang Jin. Experimental and numerical studies of Ca(OH)2/CaO dehydration process in a fixed-bed reactor for thermochemical energy storage [J]. Chinese Journal of Chemical Engineering, 2023, 62(10): 11-20. |
[9] | N. M'hanni, T. Anik, R. Touir, M. Galai, M. Ebn Touhami, E.H. Rifi, Z. Asfari, S. Bakkali. Effect of additives on nickel-phosphorus deposition obtained by electroless plating: Characterization and corrosion resistance in 3%(mass) sodium chloride medium [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 341-350. |
[10] | Peng Song, Yan Li, Shuang Yin. Mechanistic insights into homogeneous electrocatalytic reaction for energy storage using finite element simulation [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 285-296. |
[11] | Xiaoyi Chen, Danyang Song, Dong Zhang, Xiaogang Jin, Xiang Ling, Dongren Liu. Flow characteristics simulation of spiral coil reactor used in the thermochemical energy storage system [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 364-379. |
[12] | Sihan Li, Yuxuan Yang, Kuo Su, Bao Zhang, Yaqing Feng. Dopant-free small molecule hole transport materials based on triphenylamine derivatives for perovskite solar cells [J]. Chinese Journal of Chemical Engineering, 2022, 50(10): 29-42. |
[13] | Jingying Xu, Yue Lyu, Jiankun Zhuo, Yishu Xu, Zijian Zhou, Qiang Yao. Formation and emission characteristics of VOCs from a coal-fired power plant [J]. Chinese Journal of Chemical Engineering, 2021, 35(7): 256-264. |
[14] | Tongtong Zhang, Xiaohui She, Yulong Ding. A power plant for integrated waste energy recovery from liquid air energy storage and liquefied natural gas [J]. Chinese Journal of Chemical Engineering, 2021, 34(6): 242-257. |
[15] | Shanshan Wang, Liangliang Huang, Yumeng Zhang, Licheng Li, Xiaohua Lu. A mini-review on the modeling of volatile organic compound adsorption in activated carbons: Equilibrium, dynamics, and heat effects [J]. Chinese Journal of Chemical Engineering, 2021, 29(3): 153-163. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||
Full text 4
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Abstract 12
|
|
|||||||||||||||||||||||||||||||||||||||||||||