[1] A.J. Peacock, Handbook of Polyethylene: Structures, Properties, and Applications, CRC Press, Boca Raton, 2000. [2] P. Pladis, C. Kiparissides, A comprehensive model for the calculation of molecular weight-long-chain branching distribution in free-radical polymerizations, Chem. Eng. Sci. 53 (18) (1998) 3315-3333. [3] N. Yaghini, P.D. Iedema, Predicting molecular weight distribution by deterministic modeling and Monte Carlo simulations of radical polymerization with branching and scission allowing for multiradicals and gelation in various reactor configurations, Chem. Eng. Sci. 130 (2015) 310-318. [4] W. Zhou, E. Marshall, L. Oshinowo, Modeling LDPE tubular and autoclave reactors, Ind. Eng. Chem. Res. 40 (23) (2001) 5533-5542. [5] L. Marini, C. Georgakis, Low-density polyethylene vessel reactors: Part I: Steady state and dynamic modelling, AIChE J. 30 (3) (1984) 401-408. [6] S. Ochs, P. Rosendorf, I. Hyanek, X.M. Zhang, W.H. Ray, Dynamic flowsheet modeling of polymerization processes using POLYRED, Comput. Chem. Eng. 20 (6-7) (1996) 657-663. [7] S.X. Zhang, W.H. Ray, Modeling of imperfect mixing and its effects on polymer properties, AIChE J. 43 (5) (1997) 1265-1277. [8] C.M. Villa, J.O. Dihora, W. Harmon Ray, Effects of imperfect mixing on low-density polyethylene reactor dynamics, AIChE J. 44 (7) (1998) 1646-1656. [9] C. Kiparissides, G. Verros, J.F. MacGregor, Mathematical modeling, optimization, and quality control of high-pressure ethylene polymerization reactors, J. Macromol. Sci. C33 (4) (1993) 437-527. [10] X.X. Duan, D. Cheng, J.C. Cheng, X. Feng, C. Yang, Research progress on macro- and micro-mixing and intensification in stirred tank reactors, Chem. React. Eng. Technol. 29 (3) (2013) 238-246. [11] R. Phillips, S. Rohani, J. Baldyga, Micromixing in a single-feed semi-batch precipitation process, AIChE J. 45 (1) (1999) 82-92. [12] L. Smit, The use of micromixing calculations in LDPE-reactor modelling, Dechema Monographien 127 (1992) 77-92. [13] G. Tosun, A mathematical model of mixing and polymerization in a semibatch stirred-tank reactor, AIChE J. 38 (3) (1992) 425-437. [14] R. Pohorecki, J. Baldyga, New model of micromixing in chemical reactors. 2. Application to a stirred tank reactor, Ind. Eng. Chem. Fundam. 22 (4) (1983) 398-405. [15] R. Pohorecki, J. Baldyga, New model of micromixing in chemical reactors. 1. General development and application to a tubular reactor, Ind. Eng. Chem. Fundam. 22 (4) (1983) 392-397. [16] P. Pladis, C. Kiparissides, 110th Anniversary: Nonideal mixing phenomena in high-pressure low-density polyethylene autoclaves: Prediction of variable initiator efficiency and ethylene decomposition, Ind. Eng. Chem. Res. 58 (29) (2019) 13093-13111. [17] A.S. Lobasov, A.V. Minakov, Analyzing mixing quality in a T-shaped micromixer for different fluids properties through numerical simulation, Chem. Eng. Process. Intensif. 124 (2018) 11-23. [18] S. Tomasi Masoni, M. Antognoli, A. Mariotti, R. Mauri, M.V. Salvetti, C. Galletti, E. Brunazzi, Flow regimes, mixing and reaction yield of a mixture in an X-microreactor, Chem. Eng. J. 437 (2022) 135113. [19] Z.M. Chen, P. Zhang, Z.C. Tang, X.Q. Fan, Y. Yang, B.B. Jiang, Z.L. Huang, J.D. Wang, Y.R. Yang, Controlling law of flow and mixing behavior in an autoclave for the production of low-density polyethylene, Ind. Eng. Chem. Res. 63 (41) (2024) 17691-17704. [20] K. Wang, L.F. Feng, Design of Mixing Equipment, China Machine Press, Beijing, 2000. [21] K. Wang, J. Yu, Stirring Equipment, Chemical Industry Press, Beijing, 2003. [22] K. Jairamdas, A. Bhalerao, M.B. Machado, S.M. Kresta, Blend time measurement in the confined impeller stirred tank, Chem. Eng. Technol. 42 (8) (2019) 1594-1601. [23] H. Kramers, G.M. Baars, W.H. Knoll, A comparative study on the rate of mixing in stirred tanks, Chem. Eng. Sci. 2 (1) (1953) 35-42. [24] P.V. Danckwerts, Continuous flow systems: Distribution of residence times, Chem. Eng. Sci. 2 (1) (1953) 1-13. [25] M. Antognoli, S. Tomasi Masoni, A. Mariotti, R. Mauri, E. Brunazzi, C. Galletti, Investigation on steady regimes in a X-shaped micromixer fed with water and ethanol, Chem. Eng. Sci. 248 (2022) 117254. [26] H.J. Zheng, Z.L. Huang, Z.W. Liao, J.D. Wang, Y.R. Yang, Y.L. Wang, Computational fluid dynamics simulations and experimental validation of macromixing and flow characteristics in low-density polyethylene autoclave reactors, Ind. Eng. Chem. Res. 53 (38) (2014) 14865-14875. [27] S.F. Reinecke, A. Deutschmann, K. Jobst, U. Hampel, Macro-mixing characterisation of a stirred model fermenter of non-Newtonian liquid by flow following sensor particles and ERT, Chem. Eng. Res. Des. 118 (2017) 1-11. [28] P. Mavros, C. Xuereb, I. Fort, J. Bertrand, Investigation by laser Doppler velocimetry of the effects of liquid flow rates and feed positions on the flow patterns induced in a stirred tank by an axial-flow impeller, Chem. Eng. Sci. 57 (18) (2002) 3939-3952. [29] S. Corrsin, The isotropic turbulent mixer: Part II. Arbitrary Schmidt number, AIChE J. 10 (6) (1964) 870-877. [30] J. Baldyga, J.R. Bourne, Simplification of micromixing calculations. I. Derivation and application of new model, Chem. Eng. J. 42 (2) (1989) 83-92. [31] J.R. Bourne, F. Kozicki, P. Rys, Mixing and fast chemical reaction-I. Test reactions to determine segregation, Chem. Eng. Sci. 36 (10) (1981) 1643-1648. [32] M.C. Fournier, L. Falk, J. Villermaux, A new parallel competing reaction system for assessing micromixing efficiency-Experimental approach, Chem. Eng. Sci. 51 (22) (1996) 5053-5064. [33] B.Q. Liu, M.M. Wang, J.L. Liu, L.Y. Qian, Z.J. Jin, Experimental study on micromixing characteristics of novel large-double-blade impeller, Chem. Eng. Sci. 123 (2015) 641-647. [34] M. Assirelli, W. Bujalski, A. Eaglesham, A.W. Nienow, Study of micromixing in a stirred tank using a Rushton turbine comparison of feed positions and other mixing devices, Chem. Eng. Res. Des. 80 (8) (2002) 855-863. [35] J.M. Rousseaux, L. Falk, H. Muhr, E. Plasari, Micromixing efficiency of a novel sliding-surface mixing device, AIChE J. 45 (10) (1999) 2203-2213. [36] P.V. Danckwerts, The definition and measurement of some characteristics of mixtures, Appl. Sci. Res. Sect. A 3 (4) (1952) 279-296. [37] D.A. Palmer, R.W. Ramette, R.E. Mesmer, Triiodide ion formation equilibrium and activity coefficients in aqueous solution, J. Solut. Chem. 13 (9) (1984) 673-683. [38] P. Costa, C. Trevissoi, Reactions with non-linear kinetics in partially segregated fluids, Chem. Eng. Sci. 27 (11) (1972) 2041-2054. [39] J.M. Ottino, Lamellar mixing models for structured chemical reactions and their relationship to statistical models: Macro- and micromixing and the problem of averages, Chem. Eng. Sci. 35 (6) (1980) 1377-1381. [40] J. Villermaux, Micromixing phenomena in stirred reactors, Encyclopedia of Fluid Mechanics 2 (1986) 707-771. [41] M. Kinzl, G. Luft, R. Horst, B.A. Wolf, Viscosity of solutions of low-density polyethylene in ethylene as a function of temperature and pressure, J. Rheol. 47 (4) (2003) 869-877. [42] M. Coroneo, G. Montante, A. Paglianti, F. Magelli, CFD prediction of fluid flow and mixing in stirred tanks: Numerical issues about the RANS simulations, Comput. Chem. Eng. 35 (10) (2011) 1959-1968. [43] S. Murthy Shekhar, S. Jayanti, CFD study of power and mixing time for paddle mixing in unbaffled vessels, Chem. Eng. Res. Des. 80 (5) (2002) 482-498. [44] J.R. Bourne, Mixing on the molecular scale (micromixing), Chem. Eng. Sci. 38 (1) (1983) 5-8. [45] J. Bourne, P. Dell’Ava, Micro-and macro-mixing in stirred tank reactors of different sizes, Chem. Eng. Res. Des. 65 (1987) 180-186. [46] N.K. Read, S.X. Zhang, W.H. Ray, Simulations of a LDPE reactor using computational fluid dynamics, AIChE J. 43 (1) (1997) 104-117. |