[1] H. Bashiri, F. Bertrand, J. Chaouki, Development of a multiscale model for the design and scale-up of gas/liquid stirred tank reactors, Chem. Eng. J. 297 (2016) 277-294. [2] G. Montante, D. Horn, A. Paglianti, Gas-liquid flow and bubble size distribution in stirred tanks, Chem. Eng. Sci. 63 (8) (2008) 2107-2118. [3] G. Montante, A. Paglianti, Gas hold-up distribution and mixing time in gas-liquid stirred tanks, Chem. Eng. J. 279 (2015) 648-658. [4] K.V. Sharp, R.J. Adrian, PIV study of small-scale flow structure around a rushton turbine, AIChE J. 47 (4) (2001) 766-778. [5] S. Baldi, M. Yianneskis, On the quantification of energy dissipation in the impeller stream of a stirred vessel from fluctuating velocity gradient measurements, Chem. Eng. Sci. 59 (13) (2004) 2659-2671. [6] H. Wu, G.K. Patterson, Laser-doppler measurements of turbulent-flow parameters in a stirred mixer, Chem. Eng. Sci. 44 (10) (1989) 2207-2221. [7] I. Fort, H. Valesova, V. Kudrna, Studies on mixing. XXVII. Liquid circulation in a system with axial mixer and radial baffles, Collect. Czech. Chem. Commun. 36 (1) (1971) 164-185. [8] V.V. Ranade, J.B. Joshi, A.G. Marathe, Flow generated by pitched blade turbines II: Simulation using κ-ε model, Chem. Eng. Commun. 81 (1) (1989) 225-248. [9] G. Wang, Y. Gu, L.H.B. Zhao, J. Xuan, G.F. Zeng, Z.Y. Tang, Y.H. Sun, Experimental and numerical investigation of fractal-tree-like heat exchanger manufactured by 3D printing, Chem. Eng. Sci. 195 (2019) 250-261. [10] X.D. Zhang, L.S. Zhong, G.F. Zeng, Y. Gu, C. Peng, F. Yu, Z.Y. Tang, Y.H. Sun, Process intensification of honeycomb fractal micro-reactor for the direct production of lower olefins from syngas, Chem. Eng. J. 351 (2018) 12-21. [11] S.N. Wang, X.L. Sun, C.L. Xu, J.T. Bao, C. Peng, Z.Y. Tang, Investigation of a circulating turbulent fluidized bed with a fractal gas distributor by electrostatic-immune electrical capacitance tomography, Powder Technol. 361 (2020) 562-570. [12] D. Hurst, J.C. Vassilicos, Scalings and decay of fractal-generated turbulence, Phys. Fluids 19 (3) (2007) 035103. [13] A.A. Kulkarni, N. Jha, A. Singh, S. Bhatnagar, B.D. Kulkarni, Fractal impeller for stirred tank reactors, Ind. Eng. Chem. Res. 50 (12) (2011) 7667-7676. [14] G.M. Mule, R. Lohia, A.A. Kulkarni, Effect of number of branches on the performance of fractal impeller in a stirred tank: Mixing and hydrodynamics, Chem. Eng. Res. Des. 108 (2016) 164-175. [15] J. Nedic, B. Ganapathisubramani, J.C. Vassilicos, Drag and near wake characteristics of flat plates normal to the flow with fractal edge geometries, Fluid Dyn. Res. 45 (6) (2013) 061406. [16] K. Steiros, P.J.K. Bruce, O.R.H. Buxton, J.C. Vassilicos, Power consumption and form drag of regular and fractal-shaped turbines in a stirred tank, AIChE J. 63 (2) (2017) 843-854. [17] S. Basbug, G. Papadakis, J.C. Vassilicos, Reduced power consumption in stirred vessels by means of fractal impellers, AIChE J. 64 (4) (2018) 1485-1499. [18] S. Basbug, G. Papadakis, J.C. Vassilicos, Reduced mixing time in stirred vessels by means of irregular impellers, Phys. Rev. Fluids 3 (8) (2018) 084502. [19] D.Y. Gu, C. Cheng, Z.H. Liu, Y.D. Wang, Numerical simulation of solid-liquid mixing characteristics in a stirred tank with fractal impellers, Adv. Powder Technol. 30 (10) (2019) 2126-2138. [20] D.Y. Gu, X.H. Shi, Z.H. Liu, Intensification on drawdown process of floating particles by circle package fractal impellers, J. Taiwan Inst. Chem. Eng. 106 (2020) 62-73. [21] D.Y. Gu, M. Ye, X.M. Wang, Z.H. Liu, Numerical investigation on mixing characteristics of floating and sinking particles in a stirred tank with fractal impellers, J. Taiwan Inst. Chem. Eng. 116 (2020) 51-61. [22] D.Y. Gu, Y. Mei, L. Wen, X.M. Wang, Z.H. Liu, Chaotic mixing and mass transfer characteristics of fractal impellers in gas-liquid stirred tank, J. Taiwan Inst. Chem. Eng. 121 (2021) 20-28. [23] P.C. Luo, H. Zhang, Y.J. Wu, P. You, A fractal blades impeller. Chinese Pat., CN113332937A (2021). [24] M. Germano, U. Piomelli, P. Moin, W.H. Cabot, A dynamic subgrid-scale eddy viscosity model, Phys. Fluids A Fluid Dyn. 3 (7) (1991) 1760-1765. [25] W. W. Kim, S. Menon, Application of the localized dynamic subgrid-scale model to turbulent wall-bounded flows, 35th Aerospace Sciences Meeting and Exhibit, AIAA, Reno, NV, USA, 1997, AIAA1997-210. [26] X. Pan, L. Ding, P.C. Luo, H. Wu, Z. Zhou, Z.B. Zhang, LES and PIV investigation of turbulent characteristics in a vessel stirred by a novel long-short blades agitator, Chem. Eng. Sci. 176 (2018) 343-355. [27] Y. Xu, B. Wu, P.C. Luo, Investigation on the flow characteristics of a novel multi-blade combined agitator by time-resolved particle image velocimetry and large eddy simulation, AIChE J. 66 (8) (2020) e16277. [28] Y.Q. Zhang, X. Pan, Y.H. Wang, P.C. Luo, H. Wu, Numerical and experimental investigation on surface air entrainment mechanisms of a novel long-short blades agitator, AIChE J. 64 (1) (2018) 316-325. [29] S. Menon, P.K. Yeung, W.W. Kim, Effect of subgrid models on the computed interscale energy transfer in isotropic turbulence, Comput. Fluids 25 (2) (1996) 165-180. [30] D.K. Lilly, A proposed modification of the germano subgrid-scale closure method, Phys. Fluids A Fluid Dyn. 4 (3) (1992) 633-635. [31] I. Gonzalez-Neria, A. Alonzo-Garcia, S.A. Martinez-Delgadillo, V.X. Mendoza-Escamilla, J.A. Yanez-Varela, P.G. Verdin, G. Rivadeneyra-Romero, PIV and dynamic LES of the turbulent stream and mixing induced by a v-grooved blade axial agitator, Chem. Eng. J. 374 (2019) 1138-1152. [32] E.L. Paul, V.A. Atiemo-Obeng, S.M. Kresta, Handbook of Industrial Mixing: Science and Practice, Wiley-Interscience, Hoboken, New Jersey, 2004. [33] G.C. Wang, F. Yang, K. Wu, Y.F. Ma, C. Peng, T.S. Liu, L.P. Wang, Estimation of the dissipation rate of turbulent kinetic energy: A review, Chem. Eng. Sci. 229 (2021) 116133. [34] D. Xu, J. Chen, Accurate estimate of turbulent dissipation rate using PIV data, Exp. Therm. Fluid Sci. 44 (2013) 662-672. [35] D. Cavar, K.E. Meyer, LES of turbulent jet in cross flow: Part 2 - POD analysis and identification of coherent structures, Int. J. Heat Fluid Flow 36 (2012) 35-46. [36] S.B. Pope, Ten questions concerning the large-eddy simulation of turbulent flows, New J. Phys. 6 (2004) 35. [37] J. Jeong, F. Hussain, On the identification of a vortex, J. Fluid. Mech. 285 (1995) 69-94. [38] C.Q. Liu, Y.Q. Wang, Y. Yang, Z.W. Duan, New omega vortex identification method, Sci. China Phys. Mech. Astron. 59 (8) (2016) 684711. [39] Y.N. Zhang, X.Y. Wang, Y.N. Zhang, C.Q. Liu, Comparisons and analyses of vortex identification between Omega method and Q criterion, J. Hydrodyn. 31 (2) (2019) 224-230. [40] M.F.W. Distelhoff, J. Laker, A.J. Marquis, J.M. Nouri, The application of a strain gauge technique to the measurement of the power characteristics of five impellers, Exp. Fluids 20 (1) (1995) 56-58. |