[1] A. Nienow, M. Edwards, N. Harnby, Mixing in the Process Industries (2nd ed.), Butterworth-Heinemann, Oxford, 1997. [2] W.J. Li, S.B. Wang, H. Wang, C.L. Li, Y.L. Zhai, J.X. Xu, Q.T. Xiao, Enhanced mechanical stirring by eccentric impeller stirring system in zinc hydrometallurgy process for cadmium removal, Int. J. Chem. React. Eng. 21 (8) (2023) 921-936. [3] K. Niranjan, D.L.O. Smith, C.D. Rielly, J.A. Lindley, V.R. Phillips, Mixing processes for agricultural and food materials: Part 5, Review of mixer types, J. Agric. Eng. Res. 59 (3) (1994) 145-161. [4] M.M. Alvarez-Hernandez, T. Shinbrot, J. Zalc, F.J. Muzzio, Practical chaotic mixing, Chem. Eng. Sci. 57 (17) (2002) 3749-3753. [5] D.J. Lamberto, F.J. Muzzio, P.D. Swanson, A.L. Tonkovich, Using time-dependent RPM to enhance mixing in stirred vessels, Chem. Eng. Sci. 51 (5) (1996) 733-741. [6] Y.H. Qian, D. D’Humieres, P. Lallemand, Lattice BGK models for Navier-Stokes equation, Europhys. Lett. 17 (6) (1992) 479-484. [7] D. Wolf-Gladrow, Lattice-gas Cellular Automata and Lattice Boltzmann Models: An Introduction, Springer, New York, 2004. [8] J.B. Joshi, N.K. Nere, C.V. Rane, B.N. Murthy, C.S. Mathpati, A.W. Patwardhan, V.V. Ranade, CFD simulation of stirred tanks: comparison of turbulence models. Part I: Radial flow impellers, Can. J. Chem. Eng. 89 (1) (2011) 23-82. [9] J.B. Joshi, N.K. Nere, C.V. Rane, B.N. Murthy, C.S. Mathpati, A.W. Patwardhan, V.V. Ranade, CFD simulation of stirred tanks: Comparison of turbulence models (Part II: Axial flow impellers, multiple impellers and multiphase dispersions), Can. J. Chem. Eng. 89 (4) (2011) 754-816. [10] S. Hashimoto, H. Ito, Y. Inoue, Experimental study on geometric structure of isolated mixing region in impeller agitated vessel, Chem. Eng. Sci. 64 (24) (2009) 5173-5181. [11] M.M. Alvarez, J.M. Zalc, T. Shinbrot, P.E. Arratia, F.J. Muzzio, Mechanisms of mixing and creation of structure in laminar stirred tanks, AIChE J. 48 (10) (2002) 2135-2148. [12] A.D. Charalambidou, M. Micheletti, A. Ducci, Study of trailing vortices and impeller jet instabilities of a flat blade impeller in small-scale reactors, AIChE J. 69 (2) (2023) e17842. [13] W.G. Yao, H. Sato, K. Takahashi, K. Koyama, Mixing performance experiments in impeller stirred tanks subjected to unsteady rotational speeds, Chem. Eng. Sci. 53 (17) (1998) 3031-3040. [14] J. Karcz, M. Cudak, J. Szoplik, Stirring of a liquid in a stirred tank with an eccentrically located impeller, Chem. Eng. Sci. 60 (8-9) (2005) 2369-2380. [15] M.M. Alvarez, A. Guzman, M. Elias, Experimental visualization of mixing pathologies in laminar stirred tank bioreactors, Chem. Eng. Sci. 60 (8-9) (2005) 2449-2457. [16] D.J. Lamberto, M.M. Alvarez, F.J. Muzzio, Experimental and computational investigation of the laminar flow structure in a stirred tank, Chem. Eng. Sci. 54 (7) (1999) 919-942. [17] K.C. Ng, E.Y.K. Ng, Laminar mixing performances of baffling, shaft eccentricity and unsteady mixing in a cylindrical vessel, Chem. Eng. Sci. 104 (2013) 960-974. [18] M.H. Liu, G.D. Zhang, J. Xiao, R. Jeantet, G. Delaplace, Y. Wang, Z.Z. Dong, X.D. Chen, Mixing intensification with soft-elastic baffle (SEB) in a soft-elastic reactor (SER), Chem. Eng. Process. Process. Intensif. 180 (2022) 108764. [19] J. Kamienski, R. Wojtowicz, Dispersion of liquid-liquid systems in a mixer with a reciprocating agitator, Chem. Eng. Process. Process. Intensif. 42 (12) (2003) 1007-1017. [20] R. Wojtowicz, Choice of an optimal agitated vessel for the drawdown of floating solids, Ind. Eng. Chem. Res. 53 (36) (2014) 13989-14001. [21] R. Wojtowicz, Flow pattern and power consumption in a vibromixer, Chem. Eng. Sci. 172 (2017) 622-635. [22] M.Y. Fan, J.X. Xu, H. Sun, S.B. Wang, X. Zhang, H. Wang, W.L. Yin, Enhancement of chaotic mixing performance in laminar flow with reciprocating and rotating coupled agitator, Chem. Eng. Sci. 280 (2023) 118988. [23] A. Ochieng, Onyango, K. Kiriamiti, Experimental measurement and computational fluid dynamics simulation of mixing in a stirred tank: A review, S. Afr. N. J. Sci. 105 (11/12) (2010) 421-426. [24] M. Rahimi, A. Parvareh, Experimental and CFD investigation on mixing by a jet in a semi-industrial stirred tank, Chem. Eng. J. 115 (1-2) (2005) 85-92. [25] Y.J. Lu, J.K. Huang, P.F. Zheng, A CFD-DEM study of bubble dynamics in fluidized bed using flood fill method, Chem. Eng. J. 274 (2015) 123-131. [26] J.P. Caltagirone, S. Vincent, C. Caruyer, A multiphase compressible model for the simulation of multiphase flows, Comput. Fluids 50 (1) (2011) 24-34. [27] J.U. Brackbill, D.B. Kothe, C. Zemach, A continuum method for modeling surface tension, J. Comput. Phys. 100 (2) (1992) 335-354. [28] A. Akhtar, V. Pareek, M.Tade, CFD simulations for continuous flow of bubbles through gas-liquid columns: Application of VOF method, Chem. Prod. Process. Model. 2 (1) (2007) 9. [29] B. Li, J.T. Wang, Mixing intensification through modifications of PBT impellers studied by DEM-VOF method, Chem. Eng. Process. Process. Intensif. 177 (2022) 109001. [30] M.Z. Zheng, Q.Y. Zhao, Z.M. Zhang, L. Zhou, T.A. Zhang, Numerical simulation of the influence of particle physical properties on flow field during the aeration leaching process, Proceedings of the Materials Processing Fundamentals 2021, 2021, pp. 43-52. [31] L.K. Hjertager, B. Hjertager, T. Solberg, CFD modelling of turbulent mixing in a confined wake flow, AIChE Annual Meeting, 2003. [32] Q.Q. Kang, J.F. Liu, X. Feng, C. Yang, J.T. Wang, Isolated mixing regions and mixing enhancement in a high-viscosity laminar stirred tank, Chin. J. Chem. Eng. 41 (2022) 176-192. [33] M. Zhao, L. Cheng, H.W. An, L. Lu, Three-dimensional numerical simulation of vortex-induced vibration of an elastically mounted rigid circular cylinder in steady current, J. Fluids Struct. 50 (2014) 292-311. [34] T. Meng, Y. Wang, S.S. Wang, S. Qin, Q. Zhang, Y.D. Wang, C.Y. Tao, Y.Q. Xu, Z.H. Liu, Exploration of multishafts stirred reactors: An investigation on experiments and large eddy simulations for turbulent chaos and mixing characteristics, Ind. Eng. Chem. Res. 63 (5) (2024) 2441-2456. [35] K.W. Song, W.L. Hu, S. Liu, L.B. Wang, Quantitative relationship between secondary flow intensity and heat transfer intensity in flat-tube-and-fin air heat exchanger with vortex generators, Appl. Therm. Eng. 103 (2016) 1064-1070. [36] Q.Y. Zhang, S.B. Wang, H. Wang, J.X. Xu, C.L. Li, Q.T. Xiao, Numerical and experimental investigations on enhancement mixing performance of multi-blade stirring system for fluids with different viscosities, Int. J. Chem. React. Eng. 21 (8) (2023) 951-964. [37] S. Gohel, S. Joshi, M. Azhar, M. Horner, G. Padron, CFD modeling of solid suspension in a stirred tank: Effect of drag models and turbulent dispersion on cloud height, Int. J. Chem. Eng. 2012 (2012) 956975. [38] S. Bhattacharyya, J.P. Abraham, L.J. Cheng, J. Gorman, Introductory chapter: A brief history of and introduction to computational fluid dynamics, in: Applications of Computational Fluid Dynamics Simulation and Modeling, IntechOpen, 2021. [39] S. Nagata, K. Yamamoto, T. Yokoyama, S. Shiga, Studies on the power requirement of mixing impellers (IV): Empirical equations applicable for a wide range, Memoirs of the Faculty of Engineering, Kyoto University 19 (3) (1957) 274-290. [40] S. Nagata, T. Yokoyama, H. Maeda, Studies on the power requirement of mixing impellers (III): Empirical equations for paddle agitators in cylindrical vessels, Memoirs of the Faculty of Engineering, Kyoto University 18 (1) (1956) 13-29. [41] L.A. Cutter, Flow and turbulence in a stirred tank, AIChE J. 12 (1) (1966) 35-45. [42] M.H. Vakili, M.N. Esfahany, CFD analysis of turbulence in a baffled stirred tank, A three-compartment model, Chem. Eng. Sci. 64 (2) (2009) 351-362. |