[1] N. Bossa, C. Delpivo, J.M. Sipe, L.J. Gao, V. Pomar, G. Stefanescu Miralles, A.S. Fonseca, K.A. Jensen, S. Vazquez-Campos, Indoor paint life cycle particle release: Safer-by-design products and the importance of choosing the right formula, Sci. Total Environ. 946 (2024) 174155. [2] R.G. Guan, Z.J. He, S.S. Liu, Y.Y. Han, Q.X. Wang, W. Cui, T. He, A novel photoelectrochemical approach for efficient assessment of TiO2 pigments weatherability, Powder Technol. 380 (2021) 334-340. [3] K. Yang, S. Zhong, H.R. Yue, S.Y. Tang, K. Ma, C.J. Liu, K. Qiao, B. Liang, Application of pulsed chemical vapor deposition on the SiO2-coated TiO2 production within a rotary reactor at room temperature, Chin. J. Chem. Eng. 45 (2022) 22-31. [4] Y.L. Lin, T.J. Wang, Y. Jin, Surface characteristics of hydrous silica-coated TiO2 particles, Powder Technol. 123 (2-3) (2002) 194-198. [5] Y. Wang, Y.S. Chen, L. Yang, J.C. Jian, S.S. Liu, S.G. Guo, W. Cui, T. He, Insights into the composite coating for improving the weatherability of TiO2 white pigments, J. Coat. Technol. Res. 20 (6) (2023) 2125-2133. [6] H.X. Wu, T.J. Wang, Y. Jin, Morphology “phase diagram” of the hydrous alumina coating on TiO2 particles during aqueous precipitation, Ind. Eng. Chem. Res. 45 (15) (2006) 5274-5278. [7] Y.S. Zhang, H.B. Yin, A.L. Wang, C. Liu, L.B. Yu, T.S. Jiang, Y. Hang, Evolution of zirconia coating layer on rutile TiO2 surface and the pigmentary property, J. Phys. Chem. Solids 71 (10) (2010) 1458-1466. [8] E. Jang, K. Sridharan, Y.M. Park, T.J. Park, Eliminated phototoxicity of TiO2 particles by an atomic-layer-deposited Al2O3 coating layer for UV-protection applications, Chemistry 22 (34) (2016) 12022-12026. [9] J. Guo, S. Yuan, Y. Yu, J. Van Ommen, H. Van Bui, B. Liang, Room-temperature pulsed CVD-grown SiO2 protective layer on TiO2 particles for photocatalytic activity suppression, RSC Adv. 7 (2017) 4547-4554. [10] Z. He, Y. Zhou, Y.X. Wang, P.Y. Guo, W.S. Jiang, C.Z. Yao, X. Shu, Preparation and properties of Ni-W-P-TiO2 nanocomposite coatings developed by a Sol-enhanced electroplating method, Chin. J. Chem. Eng. 44 (2022) 369-376. [11] X.Q. Ren, J.H. Niu, Y. Li, L. Li, C. Zhang, Q. Guo, Q.L. Zhang, W.Z. Jiao, Photocatalytic ozonation-based degradation of phenol by ZnO-TiO2 nanocomposites in spinning disk reactor, Chin. J. Chem. Eng. 72 (2024) 74-84. [12] A. Goulas, J. Ruud van Ommen, Atomic layer deposition of platinum clusters on titania nanoparticles at atmospheric pressure, J. Mater. Chem. A 1 (15) (2013) 4647-4650. [13] I.J. Hsu, J.G. Chen, X.Q. Jiang, B.G. Willis, Atomic layer deposition synthesis and evaluation of core-shell Pt-WC electrocatalysts, J. Vac. Sci. Technol. A Vac. Surf. Films 33 (1) (2015) 01A129. [14] D. Longrie, D. Deduytsche, C. Detavernier, Reactor concepts for atomic layer deposition on agitated particles: a review, J. Vac. Sci. Technol. A Vac. Surf. Films 32 (1) (2014) 010802. [15] Z.Y. Hai, M. Karbalaei Akbari, C.Y. Xue, H.Y. Xu, E. Solano, C. Detavernier, J. Hu, S. Zhuiykov, Atomically-thin WO3/TiO2 heterojunction for supercapacitor electrodes developed by atomic layer deposition, Compos. Commun. 5 (2017) 31-35. [16] J.D. Ferguson, A.W. Weimer, S.M. George, Atomic layer deposition of ultrathin and conformal Al2O3 films on BN particles, Thin Solid Films 371 (1-2) (2000) 95-104. [17] J.D. Ferguson, A.W. Weimer, S.M. George, Atomic layer deposition of SiO2 films on BN particles using sequential surface reactions, Chem. Mater. 12 (11) (2000) 3472-3480. [18] J.D. Ferguson, A.W. Weimer, S.M. George, Atomic layer deposition of Al2O3 and SiO2 on BN particles using sequential surface reactions, Appl. Surf. Sci. 162 (2000) 280-292. [19] A.C. Balazs, T. Emrick, T.P. Russell, Nanoparticle polymer composites: where two small worlds meet, Science 314 (5802) (2006) 1107-1110. [20] X.L. Zhu, Q. Zhang, Y. Wang, F. Wei, Review on the nanoparticle fluidization science and technology, Chin. J. Chem. Eng. 24 (1) (2016) 9-22. [21] W. Liu, D.Y. Liu, Z.Y. Zhang, Z.K. Sun, Synthesis of core-shell nanostructured SiO2/TiO2 photocatalysts via atomic layer deposition in a fluidized bed with central tube, Particuology 91 (2024) 19-28. [22] J.S. Yang, T. Zhou, L.Y. Song, Agglomerating vibro-fluidization behavior of nano-particles, Adv. Powder Technol. 20 (2) (2009) 158-163. [23] S. Kaliyaperumal, S. Barghi, J. Zhu, L. Briens, S. Rohani, Effects of acoustic vibration on nano and sub-micron powders fluidization, Powder Technol. 210 (2) (2011) 143-149. [24] J.R. Wank, S.M. George, A.W. Weimer, Nanocoating individual cohesive boron nitride particles in a fluidized bed by ALD, Powder Technol. 142 (1) (2004) 59-69. [25] W. Liu, Z.Y. Zhang, D.Y. Liu, Comparison of SiO2/TiO2 photocatalysts with different thicknesses synthesized by fluidized bed atomic layer deposition, Powder Technol. 438 (2024) 119613. [26] H. Van Bui, F. Grillo, J.R. van Ommen, Atomic and molecular layer deposition: off the beaten track, Chem. Commun. 53 (1) (2017) 45-71. [27] J. Guo, D. Benz, T.T. Doan Nguyen, P.H. Nguyen, T.L. Thi Le, H.H. Nguyen, D. La Zara, B. Liang, H.T. Hintzen, J.R. van Ommen, H. Van Bui, Tuning the photocatalytic activity of TiO2 nanoparticles by ultrathin SiO2 films grown by low-temperature atmospheric pressure atomic layer deposition, Appl. Surf. Sci. 530 (2020) 147244. [28] J. Guo, H. Van Bui, D. Valdesueiro, S. Yuan, B. Liang, J.R. van Ommen, Suppressing the photocatalytic activity of TiO2 nanoparticles by extremely thin Al2O3 films grown by gas-phase deposition at ambient conditions, Nanomaterials 8 (2) (2018) 61. [29] Y.Y. Yu, K.J. Wu, S.Y. Lu, K. Ma, S. Zhong, H.G. Zhang, Y.M. Zhu, J. Guo, H.R. Yue, C.J. Liu, S.Y. Tang, B. Liang, Engineering an ultrathin amorphous TiO2 layer for boosting the weatherability of TiO2 pigment with high lightening power, Chin. J. Chem. Eng. 27 (11) (2019) 2825-2834. [30] C. Zhu, Q. Yu, R.N. Dave, R. Pfeffer, Gas fluidization characteristics of nanoparticle agglomerates, AlChE. J. 51 (2) (2005) 426-439. [31] A. Bahramian, J.R. Grace, Fluidization of titania nanoparticle agglomerates in a bench-scale conical vessel, Powder Technol. 310 (2017) 46-59. [32] Y. Mawatari, T. Koide, Y. Tatemoto, S. Uchida, K. Noda, Effect of particle diameter on fluidization under vibration, Powder Technol. 123 (1) (2002) 69-74. [33] H.A.C.K. Hettiarachchi, W.K. Mampearachchi, Effect of vibration frequency, size ratio and large particle volume fraction on packing density of binary spherical mixtures, Powder Technol. 336 (2018) 150-160. [34] Y. Wang, G.S. Gu, F. Wei, J. Wu, Fluidization and agglomerate structure of SiO2 nanoparticles, Powder Technol. 124 (1-2) (2002) 152-159. [35] M. Juppo, A. Rahtu, M. Ritala, In situ mass spectrometry study on surface reactions in atomic layer deposition of TiN and Ti(Al)N thin films, Chem. Mater. 14 (1) (2002) 281-287. [36] V.R. Anderson, A.S. Cavanagh, A.I. Abdulagatov, Z.M. Gibbs, S.M. George, Waterless TiO2 atomic layer deposition using titanium tetrachloride and titanium tetraisopropoxide, J. Vac. Sci. Technol. A Vac. Surf. Films 32 (1) (2014) 01A114. [37] R. Matero, A. Rahtu, M. Ritala, In situ quadrupole mass spectrometry and quartz crystal microbalance studies on the atomic layer deposition of titanium dioxide from titanium tetrachloride and water, Chem. Mater. 13 (12) (2001) 4506-4511. [38] J.D. Ferguson, A.R. Yoder, A.W. Weimer, S.M. George, TiO2 atomic layer deposition on ZrO2 particles using alternating exposures of TiCl4 and H2O, Appl. Surf. Sci. 226 (4) (2004) 393-404. [39] D. Valdesueiro, G.M.H. Meesters, M.T. Kreutzer, J. Ruud van Ommen, Gas-phase deposition of ultrathin aluminium oxide films on nanoparticles at ambient conditions, Materials 8 (3) (2015) 1249-1263. [40] R.D. Chekuri, S.R. Tirukkovalluri, One step synthesis and characterization of copper doped sulfated titania and its enhanced photocatalytic activity in visible light by degradation of methyl orange, Chin. J. Chem. Eng. 24 (4) (2016) 475-483. [41] J.B. Metson, Charge compensation and binding energy referencing in XPS analysis, Surf. Interface Anal. 27 (12) (1999) 1069-1072. [42] C. Mousty-Desbuquoit, J. Riga, J.J. Verbist, Solid state effects in the electronic structure of TiCl4 studied by XPS, 79 (1) (1983) 26-32. [43] H. Azizpour, M. Talebi, F.D. Tichelaar, R. Sotudeh-Gharebagh, J. Guo, J.R. van Ommen, N. Mostoufi, Effective coating of titania nanoparticles with alumina via atomic layer deposition, Appl. Surf. Sci. 426 (2017) 480-496. [44] J. Houska, J. Blazek, J. Rezek, S. Proksova, Overview of optical properties of Al2O3 films prepared by various techniques, Thin Solid Films 520 (16) (2012) 5405-5408. [45] Z.D. Zhao, D.Y. Liu, J.L. Ma, X.P. Chen, Fluidization of nanoparticle agglomerates assisted by combining vibration and stirring methods, Chem. Eng. J. 388 (2020) 124213. |