[1] N. Abas, A. Kalair, N. Khan, Review of fossil fuels and future energy technologies, Futures 69 (2015) 31-49. [2] M. Hook, X. Tang, Depletion of fossil fuels and anthropogenic climate change: a review, Energy Policy 52 (2013) 797-809. [3] Y. Li, M. Vilathgamuwa, S.S. Choi, B.Y. Xiong, J.R. Tang, Y.X. Su, Y. Wang, Design of minimum cost degradation-conscious lithium-ion battery energy storage system to achieve renewable power dispatchability, Appl. Energy 260 (2020) 114282. [4] G. Zubi, R. Dufo-Lopez, M. Carvalho, G. Pasaoglu, The lithium-ion battery: state of the art and future perspectives, Renew. Sustain. Energy Rev. 89 (2018) 292-308. [5] B. Scrosati, J. Garche, Lithium batteries: status, prospects and future, J. Power Sources 195 (9) (2010) 2419-2430. [6] J.R. Gou, W.Y. Liu, Feasibility study on a novel 3D vapor chamber used for Li-ion battery thermal management system of electric vehicle, Appl. Therm. Eng. 152 (2019) 362-369. [7] S.S. Guo, R. Xiong, K. Wang, F.C. Sun, A novel echelon internal heating strategy of cold batteries for all-climate electric vehicles application, Appl. Energy 219 (2018) 256-263. [8] A. Rajan, V. Vijayaraghavan, M.P. Ooi, A. Garg, Y.C. Kuang, A simulation-based probabilistic framework for lithium-ion battery modelling, Measurement 115 (2018) 87-94. [9] M.S. Guney, Y. Tepe, Classification and assessment of energy storage systems, Renew. Sustain. Energy Rev. 75 (2017) 1187-1197. [10] T.I.C. Buidin, F. Mariasiu, Battery thermal management systems: current status and design approach of cooling technologies, Energies 14 (16) (2021) 4879. [11] S. Ma, M.D. Jiang, P. Tao, C.Y. Song, J.B. Wu, J. Wang, T. Deng, W. Shang, Temperature effect and thermal impact in lithium-ion batteries: a review, Prog. Nat. Sci. Mater. Int. 28 (6) (2018) 653-666. [12] I. Naik, M. Nandgaonkar, Review of the approaches and modeling methodology for lithium-ion battery thermal management systems in electric vehicles. Advances in Materials and Mechanical Engineering. Springer Singapore, (2021), pp 5-109. [13] K. Kitoh, H. Nemoto, 100 Wh Large size Li-ion batteries and safety tests, J. Power Sources 81 (1999) 887-890. [14] P. Ramadass, B. Haran, R. White, B.N. Popov, Capacity fade of Sony 18650 cells cycled at elevated temperatures Part I. Cycling performance, J. Power Sources 112 (2) (2002) 606-613. [15] J.P. Rugh, A.A. Pesaran, K.A. Smith, Electric vehicle battery thermal issues and thermal management techniques (presentation), National Renewable Energy Laboratory (U.S.), Golden, Colorado, 2013. [16] A.A. Pesaran, Battery thermal models for hybrid vehicle simulations, J. Power Sources 110 (2) (2002) 377-382. [17] Z.J. An, L. Jia, Y. Ding, C. Dang, X.J. Li, A review on lithium-ion power battery thermal management technologies and thermal safety, J. Therm. Sci. 26 (5) (2017) 391-412. [18] F.F. Bai, M.B. Chen, W.J. Song, Z.P. Feng, Y.L. Li, Y.L. Ding, Thermal management performances of PCM/water cooling-plate using for lithium-ion battery module based on non-uniform internal heat source, Appl. Therm. Eng. 126 (2017) 17-27. [19] J.L. Du, H.L. Tao, Y.X. Chen, X.D. Yuan, C. Lian, H.L. Liu, Thermal management of air-cooling lithium-ion battery pack, Chin. Phys. Lett. 38 (11) (2021) 118201. [20] D.Q. Zou, X.S. Liu, R.J. He, S.X. Zhu, J.M. Bao, J.R. Guo, Z.G. Hu, B.H. Wang, Preparation of a novel composite phase change material (PCM) and its locally enhanced heat transfer for power battery module, Energy Convers. Manag. 180 (2019) 1196-1202. [21] H. Abdulrasool Hasan, H. Togun, A. M Abed, H. I Mohammed, N. Biswas, A novel air-cooled Li-ion battery (LIB) array thermal management system-a numerical analysis, Int. J. Therm. Sci. 190 (2023) 108327. [22] Kausthubharam, P.K. Koorata, S. Panchal, Thermal management of large-sized LiFePO4 pouch cell using simplified mini-channel cold plates, Appl. Therm. Eng. 234 (2023) 121286. [23] W.X. Wu, S.F. Wang, W. Wu, K. Chen, S.H. Hong, Y.X. Lai, A critical review of battery thermal performance and liquid based battery thermal management, Energy Convers. Manag. 182 (2019) 262-281. [24] Y.X. Lai, W.X. Wu, K. Chen, S.F. Wang, C. Xin, A compact and lightweight liquid-cooled thermal management solution for cylindrical lithium-ion power battery pack, Int. J. Heat Mass Transf. 144 (2019) 118581. [25] N. Mei, X.M. Xu, R.Z. Li, Heat dissipation analysis on the liquid cooling system coupled with a flat heat pipe of a lithium-ion battery, ACS Omega 5 (28) (2020) 17431-17441. [26] G. Zhao, X.L. Wang, M. Negnevitsky, C.J. Li, An up-to-date review on the design improvement and optimization of the liquid-cooling battery thermal management system for electric vehicles, Appl. Therm. Eng. 219 (2023) 119626. [27] Z. Qian, Y.M. Li, Z.H. Rao, Thermal performance of lithium-ion battery thermal management system by using mini-channel cooling, Energy Convers. Manag. 126 (2016) 622-631. [28] Y.T. Huo, Z.H. Rao, X.J. Liu, J.T. Zhao, Investigation of power battery thermal management by using mini-channel cold plate, Energy Convers. Manag. 89 (2015) 387-395. [29] J. Deng, X.X. Li, G.Q. Zhang, Z.X. Wu, C.B. Li, Q.Q. Huang, C.X. Yang, Flexible composite phase-change material with shape recovery and antileakage properties for battery thermal management, ACS Appl. Energy Mater. 4 (12) (2021) 13890-13902. [30] Y.F. Lv, X.Q. Yang, G.Q. Zhang, Durability of phase-change-material module and its relieving effect on battery deterioration during long-term cycles, Appl. Therm. Eng. 179 (2020) 115747. [31] G. Righetti, G. Savio, R. Meneghello, L. Doretti, S. Mancin, Experimental study of phase change material (PCM) embedded in 3D periodic structures realized via additive manufacturing, Int. J. Therm. Sci. 153 (2020) 106376. [32] H.B. Zhou, F. Zhou, L.P. Xu, J.Z. Kong, QingxinYang, Thermal performance of cylindrical Lithium-ion battery thermal management system based on air distribution pipe, Int. J. Heat Mass Transf. 131 (2019) 984-998. [33] R.D. Jilte, R. Kumar, L. Ma, Thermal performance of a novel confined flow Li-ion battery module, Appl. Therm. Eng. 146 (2019) 1-11. [34] M.S. Wu, K.H. Liu, Y.Y. Wang, C.C. Wan, Heat dissipation design for lithium-ion batteries, J. Power Sources 109 (1) (2002) 160-166. [35] X.B. Peng, X.J. Cui, X.P. Liao, A. Garg, A thermal investigation and optimization of an air-cooled lithium-ion battery pack, Energies 13 (11) (2020) 2956. [36] J. Luo, D.Q. Zou, Y.S. Wang, S. Wang, L. Huang, Battery thermal management systems (BTMs) based on phase change material (PCM): a comprehensive review, Chem. Eng. J. 430 (2022) 132741. [37] Z.Y. Jiang, H.B. Li, Z. Sun, Z.G. Qu, Experimental study on 18650 lithium-ion battery-pack cooling system composed of heat pipe and reciprocating air flow with water mist, Int. J. Heat Mass Transf. 222 (2024) 125171. [38] X.B. Peng, C. Ma, A. Garg, N.S. Bao, X.P. Liao, Thermal performance investigation of an air-cooled lithium-ion battery pack considering the inconsistency of battery cells, Appl. Therm. Eng. 153 (2019) 596-603. [39] J. Choi, M. Jeong, J. Yoo, M. Seo, A new CPU cooler design based on an active cooling heatsink combined with heat pipes, Appl. Therm. Eng. 44 (2012) 50-56. [40] Y.S. Choi, D.M. Kang, Prediction of thermal behaviors of an air-cooled lithium-ion battery system for hybrid electric vehicles, J. Power Sources 270 (2014) 273-280. [41] T.F. Fuller, M. Doyle, J. Newman, Relaxation phenomena in lithium-ion-insertion cells, J. Electrochem. Soc. 141(4)982-990. [42] M. Doyle, T.F. Fuller, J. Newman, Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell, J. Electrochem. Soc. 140 (6)1526-1533. [43] C.X. He, Q.L. Yue, M.C. Wu, Q. Chen, T.S. Zhao, A 3D electrochemical-thermal coupled model for electrochemical and thermal analysis of pouch-type lithium-ion batteries, Int. J. Heat Mass Transf. 181 (2021) 121855. [44] W.X. Mei, H. Li, C.P. Zhao, J.H. Sun, Q.S. Wang, Numerical study on thermal characteristics comparison between charge and discharge process for lithium ion battery, Int. J. Heat Mass Transf. 162 (2020) 120319. [45] D.S. Ren, K. Smith, D.X. Guo, X.B. Han, X.N. Feng, L.G. Lu, M.G. Ouyang, J.Q. Li, Investigation of lithium plating-stripping process in Li-ion batteries at low temperature using an electrochemical model, J. Electrochem. Soc. 165 (10) (2018) A2167-A2178. [46] W.X. Mei, H.D. Chen, J.H. Sun, Q.S. Wang, Numerical study on tab dimension optimization of lithium-ion battery from the thermal safety perspective, Appl. Therm. Eng. 142 (2018) 148-165. [47] G.N. Li, S.P. Li, Physics-based CFD simulation of lithium-ion battery under the FUDS driving cycle, ECS Trans. 64 (33) (2015) 1-14. [48] S. Panchal, I. Dincer, M. Agelin-Chaab, R. Fraser, M. Fowler, Transient electrochemical heat transfer modeling and experimental validation of a large sized LiFePO4/graphite battery, Int. J. Heat Mass Transf. 109 (2017) 1239-1251. [49] V.R. Subramanian, V. Boovaragavan, V. Ramadesigan, M. Arabandi, Mathematical model reformulation for lithium-ion battery simulations: galvanostatic boundary conditions, J. Electrochem. Soc. 156 (4) (2009) A260. [50] V. Ramadesigan, P.W.C. Northrop, S. De, S. Santhanagopalan, R.D. Braatz, V.R. Subramanian, Modeling and simulation of lithium-ion batteries from a systems engineering perspective, J. Electrochem. Soc. 159 (3) (2012) R31-R45. [51] A. Samba, N. Omar, H. Gualous, O. Capron, P. Van den Bossche, J. Van Mierlo, Impact of tab location on large format lithium-ion pouch cell based on fully coupled tree-dimensional electrochemical-thermal modeling, Electrochim. Acta 147 (2014) 319-329. [52] Y.Q. Lai, S.L. Du, L. Ai, L.H. Ai, Y. Cheng, Y.W. Tang, M. Jia, Insight into heat generation of lithium ion batteries based on the electrochemical-thermal model at high discharge rates, Int. J. Hydrog. Energy 40 (38) (2015) 13039-13049. [53] J. Li, Y. Cheng, L.H. Ai, M. Jia, S.L. Du, B.H. Yin, S. Woo, H.L. Zhang, 3D simulation on the internal distributed properties of lithium-ion battery with planar tabbed configuration, J. Power Sources 293 (2015) 993-1005. [54] W.B. Gu, C.Y. Wang, Thermal-electrochemical modeling of battery systems, J. Electrochem. Soc. 147 (8) (2000) 2910. [55] F. Bahiraei, M. Ghalkhani, A. Fartaj, G.A. Nazri, A pseudo 3D electrochemical-thermal modeling and analysis of a lithium-ion battery for electric vehicle thermal management applications, Appl. Therm. Eng. 125 (2017) 904-918. [56] D. Bernardi, E. Pawlikowski, J. Newman, A general energy balance for battery systems, J. Electrochem. Soc. 132(1)5-12. [57] X.N. Feng, L.G. Lu, M.G. Ouyang, J.Q. Li, X.M. He, A 3D thermal runaway propagation model for a large format lithium ion battery module, Energy 115 (2016) 194-208. [58] J. Chiew, C.S. Chin, W.D. Toh, Z. Gao, J. Jia, C. Zhang, A pseudo three-dimensional electrochemical-thermal model of a cylindrical LiFePO4/graphite battery, Appl. Therm. Eng. 147 (2019) 450-463. [59] S.C. Chen, Y.Y. Wang, C.C. Wan, Thermal analysis of spirally wound lithium batteries, J. Electrochem. Soc. 153 (4) (2006) A637. [60] L.Y. Zhao, W. Li, G.Y. Wang, W.M. Cheng, M.Y. Chen, A novel thermal management system for lithium-ion battery modules combining direct liquid-cooling with forced air-cooling, Appl. Therm. Eng. 232 (2023) 120992. [61] X.X. Wang, Y.J. Zhang, H.J. Ni, S.S. Lv, F.B. Zhang, Y. Zhu, Y.N. Yuan, Y.L. Deng, Influence of different ambient temperatures on the discharge performance of square ternary lithium-ion batteries, Energies 15 (15) (2022) 5348. [62] J.H. Pu, R.C. Li, Y. Li, H. Zhang, M. Du, N. Hua, X.K. Zhang, The novel stereoscopic cooling plate designs and performance analysis for battery thermal management systems, Appl. Therm. Eng. 257 (2024) 124330. [63] X.Y. Huang, Y.W. Lu, J.T. Yang, Optimizing BESS performance: Anisotropic thermal properties and innovative parallel-flow cooling solutions, Int. J. Heat Mass Transf. 224 (2024) 125354. |