[1] M. Nakano, Places of emulsions in drug delivery, Adv. Drug Deliv. Rev. 45(1) (2000) 1-4. [2] A. Petitgirard, M. Djehiche, J. Persello, P. Fievet, N. Fatin-Rouge, PAH contaminated soil remediation by reusing an aqueous solution of cyclodextrins, Chemosphere 75(6) (2009) 714-718. [3] Y.J. Wang, Y.Q. Liu, X. Wei, L.M. Ding, Y.N. Feng, Z.P. Zhao, Polypropylene hollow fiber membrane prepared with green binary diluents via TIPS: Effects of spinning process parameters and VMD desalination performance, Desalination 541(2022) 116026. [4] D.L. Yarlagadda, S.K.A. Vullendula, A.R. Nair, K.S.N. Sree, S.J. Dengale, K. Bhat, Considerations for the selection of co-formers in the preparation of coamorphous formulations, Int. J. Pharm. 602(2021) 120649. [5] S.M. Yaseen, S.S. Salih, M. Kadhom, H.N. Mohammed, Enhancement of phenol recovery from wastewater by nanofluid utilizing liquid-liquid extraction method in a membrane-based contactor, Chem. Eng. Res. Des. 196(2023) 404-412. [6] J.H. Deng, S.L. Lan, J.C. Wu, S.H. Du, W.D. Liu, L.C. Han, Y.F. Zhou, CFD-PBM coupled modeling of the liquideliquid dispersion characteristics and structure optimization for Kenics static mixer, Chin. J. Chem. Eng. 70(2024) 173-188. [7] Z.Y. Wu, J.J. Cai, D.M. Wang, X.J. Liang, Q.L. Xie, Y. Nie, J.B. Ji, Hydrodynamics and droplet size distribution of liquideliquid flow in a packed bed reactor with orifice plates, AIChE J. 67(11) (2021) e17370. [8] S.T. Mortier, T. De Beer, K.V. Gernaey, J.P. Remon, C. Vervaet, I. Nopens, Mechanistic modelling of fluidized bed drying processes of wet porous granules: A review, Eur. J. Pharm. Biopharm. 79(2) (2011) 205-225. [9] J.A. Thomas, B. DeVincentis, J. Wutz, F. Ricci, Predicting the diameters of droplets produced in turbulent liquideliquid dispersion, AIChE J. 68(7) (2022) e17667. [10] D. Jasikova, M. Kotek, B. Kysela, R. Sulc, V. Kopecky, Measurement of drop size distribution time rate for liquid-liquid dispersion using IPI method. 13th International Conference on Experimental Fluid Mechanics (EFM) Planetarium & Stefaniks Observ Prague, Czech Republic, 2018. [11] F. Bonaccorso, M. Lauricella, A. Montessori, G. Amati, M. Bernaschi, F. Spiga, A. Tiribocchi, S. Succi, LBcuda: A high-performance CUDA port of LBsoft for simulation of colloidal systems, Comput. Phys. Commun. 277(2022) 108380. [12] J. Sweet, D.H. Richter, D. Thain, GPU acceleration of EulerianeLagrangian particle-laden turbulent flow simulations, Int. J. Multiphas. Flow 99(2018) 437-445. [13] S.T. Fu, L.M. Wang, GPU-based unresolved LBM-DEM for fast simulation of gasesolid flows, Chem. Eng. J. 465(2023) 142898. [14] S.L. Shu, N. Yang, Numerical study and acceleration of LBM-RANS simulation of turbulent flow, Chin. J. Chem. Eng. 26(1) (2018) 31-42. [15] S.L. Shu, N. Yang, GPU-accelerated large eddy simulation of stirred tanks, Chem. Eng. Sci. 181(2018) 132-145. [16] S.L. Shu, J.C. Zhang, N. Yang, GPU-accelerated transient lattice Boltzmann simulation of bubble column reactors, Chem. Eng. Sci. 214(2020) 115436. [17] J.C. Zhang, S.L. Shu, X.P. Guan, N. Yang, Lattice Boltzmann simulation of drop splitting in a fractal tree-like microchannel, Chem. Eng. Sci. 252(2022) 117277. [18] Y.M. Lau, W. Bai, N.G. Deen, J.A.M. Kuipers, Numerical study of bubble breakup in bubbly flows using a deterministic EulereLagrange framework, Chem. Eng. Sci. 108(2014) 9-22. [19] J.S. Hua, F.S. Gobber, M. Actis Grande, D. Mortensen, J.O. Odden, A numerical modeling framework for predicting the effects of operational parameters on particle size distribution in the gas atomization process for Nickel-Silicon alloys, Powder Technol. 435(2024) 119408. [20] P.J. O'Rourke, A.A. Amsden, The Tab Method for Numerical Calculation of Spray Droplet BreakupSAE Technical Paper Series. SAE International, 1987, pp. 11-23. [21] J.A. Thomas, X.M. Liu, B. DeVincentis, H. Hua, G. Yao, M.C. Borys, K. Aron, G. Pendse, A mechanistic approach for predicting mass transfer in bioreactors, Chem. Eng. Sci. 237(2021) 116538. [22] W.H. Wang, M. Yang, Z.M. Hu, P. Zhang, A dynamic droplet breakup model for Eulerian-Lagrangian simulation of liquid-fueled detonation, Aero. Sci. Technol. 151(2024) 109271. [23] M. Pilch, C.A. Erdman, Use of breakup time data and velocity history data to predict the maximum size of stable fragments for acceleration-induced breakup of a liquid drop, Int. J. Multiphas. Flow 13(6) (1987) 741-757. [24] R. Reitz, Modeling atomization processes in high-pressure vaporizing sprays, Atomization Spray Technol. 3(4) (1987) 309-337. [25] H.A. Luo, H.F. Svendsen, Theoretical model for drop and bubble breakup in turbulent dispersions, AIChE J. 42(5) (1996) 1225-1233. [26] C. Witz, D. Treffer, T. Hardiman, J. Khinast, Local gas holdup simulation and validation of industrial-scale aerated bioreactors, Chem. Eng. Sci. 152(2016) 636-648. [27] G. Narsimhan, J.P. Gupta, D. Ramkrishna, A model for transitional breakage probability of droplets in agitated lean liquid-liquid dispersions, Chem. Eng. Sci. 34(2) (1979) 257-265. [28] Z.L. Guo, C.G. Zheng, B.C. Shi, Discrete lattice effects on the forcing term in the lattice Boltzmann method, Phys. Rev. E - Stat. Nonlinear Soft Matter Phys. 65(4 Pt 2B) (2002) 046308. [29] C. Rettinger, U. Rüde, A coupled lattice Boltzmann method and discrete element method for discrete particle simulations of particulate flows, Comput. Fluids 172(2018) 706-719. [30] J.O. Hinze, Fundamentals of the hydrodynamic mechanism of splitting in dispersion processes, AIChE J. 1(3) (1955) 289-295. [31] M. Soos, R. Kaufmann, R. Winteler, M. Kroupa, B. Lüthi, Determination of maximum turbulent energy dissipation rate generated by a rushton impeller through large eddy simulation, AIChE J. 59(10) (2013) 3642-3658. [32] R. Zadghaffari, J.S. Moghaddas, J. Revstedt, Large-eddy simulation of turbulent flow in a stirred tank driven by a Rushton turbine, Comput. Fluids 39(7) (2010) 1183-1190. [33] C.A. Coulaloglou, L.L. Tavlarides, Description of interaction processes in agitated liquid-liquid dispersions, Chem. Eng. Sci. 32(11) (1977) 1289-1297. [34] X.P. Guan, N. Yang, K.D.P. Nigam, Prediction of droplet size distribution for high pressure homogenizers with heterogeneous turbulent dissipation rate, Ind. Eng. Chem. Res. 59(9) (2020) 4020-4032. [35] F. Lehr, M. Millies, D. Mewes, Bubble-size distributions and flow fields in bubble columns, AIChE J. 48(11) (2002) 2426-2443. [36] S. Khodadadi, R. Maddahian, H. Ramezani Mouziraji, Eulerian-Lagrangian investigation of de-oiling hydrocyclones: The effects of droplet interaction and size distribution, Chem. Eng. Sci. 277(2023) 118855. [37] J. Xue, F.G. Chen, N. Yang, W. Ge, EulerianeLagrangian simulation of bubble coalescence in bubbly flow using the spring-dashpot model, Chin. J. Chem. Eng. 25(3) (2017) 249-256. [38] A. Motin, Theoretical and Numerical Study of Swirling Flow Separation Devices for Oil-Water Mixtures, Michigan State University, 2015. [39] R.C. Song, L. Zhang, Z.M. Yi, Y.F. Zhou, H.Z. Yuan, L.C. Han, On the role of the macroscopic deformation in liquid film drainage between bubbles, AIChE J. 69(5) (2023) e18044. [40] H.D. Laufhütte, A. Mersmann, Local energy dissipation in agitated turbulent fluids and its significance for the design of stirring equipment, Chem. Eng. Technol. 10(1) (1987) 56-63. [41] H. Wu, G.K. Patterson, Laser-Doppler measurements of turbulent-flow parameters in a stirred mixer, Chem. Eng. Sci. 44(10) (1989) 2207-2221. [42] G.H. He, E.Z. Wang, X.L. Liu, Modified governing equation and numerical simulation of seepage flow in a single fracture with three-dimensional roughness, Arabian J. Geosci. 9(1) (2016) 81. [43] E.A. Mason, A.P. Malinauskas, R.B. Evans, Flow and diffusion of gases in porous media, J. Chem. Phys. 46(8) (1967) 3199-3216. [44] R. Farzad, S. Pirker, S. Schneiderbauer, Application of Eulerian-EulerianLagrangian hybrid model to simulate liquid-liquid drop size distribution in stirred tank reactors, J. Disper. Sci. Technol. 42(1) (2020) 103-118. [45] J.A. Boxall, C.A. Koh, E.D. Sloan, A.K. Sum, D.T. Wu, Measurement and calibration of droplet size distributions in water-in-oil emulsions by particle video microscope and a focused beam reflectance method, Ind. Eng. Chem. Res. 49(3) (2010) 1412-1418. |