Chinese Journal of Chemical Engineering ›› 2025, Vol. 85 ›› Issue (9): 76-94.DOI: 10.1016/j.cjche.2025.05.002
Previous Articles Next Articles
Mohammad Ali Kavianpour, Reza Abedini
Received:2024-12-06
Revised:2025-05-12
Accepted:2025-05-14
Online:2025-05-22
Published:2025-09-28
Contact:
Reza Abedini,E-mail:abedini@nit.ac.ir
Supported by:Mohammad Ali Kavianpour, Reza Abedini
通讯作者:
Reza Abedini,E-mail:abedini@nit.ac.ir
基金资助:Mohammad Ali Kavianpour, Reza Abedini. Enhanced CO2 separation performance of Pebax®2533 mixed matrix membrane incorporated by synthesized mixed-ligand UiO-67[J]. Chinese Journal of Chemical Engineering, 2025, 85(9): 76-94.
Mohammad Ali Kavianpour, Reza Abedini. Enhanced CO2 separation performance of Pebax®2533 mixed matrix membrane incorporated by synthesized mixed-ligand UiO-67[J]. 中国化学工程学报, 2025, 85(9): 76-94.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2025.05.002
| [1] M.H. Nematollahi, P.J. Carvalho, J.A.P. Coutinho, R. Abedini, Tailoring the CO2 permeation of Pebax1657/polyether imide thin film composite membrane via embedding Ag-based metal-organic framework, Chem. Eng. Res. Des. 197 (2023) 109-126. [2] Y.K. Pan, X.M. Zhang, W.W. He, L. Zheng, X.L. Han, Dha Tab-COF filled PEBAX mixed matrix membranes for effective CO2/CH4 separation, Chin. J. Chem. Eng. 77 (2025) 123-134. [3] R. Khazaei, R. Abedini, Exploring the performance of a composite membrane with a nanometer-thin selective layer of chitosan-gallic acid for the separation of carbon dioxide, J. App. Res. Chem. Polym. Eng. 7 (2023) 47-61. [4] M.A. Carreon, Molecular sieve membranes for N2/CH4 separation, J. Mater. Res. 33 (1) (2018) 32-43. [5] F. Ranjbar, R. Abedini, M. Ghorbani, M. Ghasemi, The experimental/theoretical study over the effect of using the POP-NH2 nanostructures into the membrane selective layer on the CO2 permeability and selectivity, Chem. Eng. Res. Des. 187 (2022) 184-195. [6] G.Z. Li, S.Q. Ling, Y.H. Cui, S.L. Dong, T.Y. Liu, T. Li, S.Y. Pang, P.Y. Qin, A covalently integrated ZIF-8/polyamide acid mixed matrix membrane with superior gas separation performance, Chin. J. Chem. Eng. 76 (2024) 30-41. [7] M. Doosti, R. Abedini, Polyethyleneglycol-modified cellulose acetate membrane for efficient olefin/paraffin separation, Energy Fuels 36 (17) (2022) 10082-10095. [8] M. Rezakazemi, Z. Niazi, M. Mirfendereski, S. Shirazian, T. Mohammadi, A. Pak, CFD simulation of natural gas sweetening in a gas-liquid hollow-fiber membrane contactor, Chem. Eng. J. 168 (3) (2011) 1217-1226. [9] F. Guo, B.Z. Li, R. Ding, D.S. Li, X.B. Jiang, G.H. He, W. Xiao, A novel composite material UiO-66@HNT/Pebax mixed matrix membranes for enhanced CO2/N2 separation, Membranes 11 (9) (2021) 693. [10] P. Bernardo, E. Drioli, G. Golemme, Membrane gas separation: A review/state of the art, Ind. Eng. Chem. Res. 48 (10) (2009) 4638-4663. [11] M. Rezakazemi, M. Sadrzadeh, T. Matsuura, Thermally stable polymers for advanced high-performance gas separation membranes, Prog. Energy Combust. Sci. 66 (2018) 1-41. [12] A.F. Ismail, K.C. Khulbe, T. Matsuura, Gas separation membrane materials and structures. Gas Separation Membranes. Springer International Publishing, New York, 2015, pp. 7-192. [13] L.M. Robeson, The upper bound revisited, J. Membr. Sci. 320 (1-2) (2008) 390-400. [14] P.A. Gamali, A. Kazemi, R. Zadmard, M.J. Anjareghi, A. Rezakhani, R. Rahighi, M. Madani, Distinguished discriminatory separation of CO2 from its methane-containing gas mixture via PEBAX mixed matrix membrane, Chin. J. Chem. Eng. 26 (1) (2018) 73-80. [15] A. Car, C. Stropnik, W. Yave, K.V. Peinemann, Pebax®/polyethylene glycol blend thin film composite membranes for CO2 separation: Performance with mixed gases, Sep. Purif. Technol. 62 (1) (2008) 110-117. [16] H. Rabiee, S.M. Alsadat, M. Soltanieh, S.A. Mousavi, A. Ghadimi, Gas permeation and sorption properties of poly (amide-12-b-ethyleneoxide)(Pebax1074)/SAPO-34 mixed matrix membrane for CO2/CH4 and CO2/N2 separation, J. Ind. Eng. Chem. 27 (2015) 223-239. [17] N. Azizi, T. Mohammadi, R. Mosayebi Behbahani, Comparison of permeability performance of PEBAX-1074/TiO2, PEBAX-1074/SiO2 and PEBAX-1074/Al2O3 nanocomposite membranes for CO2/CH4 separation, Chem. Eng. Res. Des. 117 (2017) 177-189. [18] H. Rabiee, S. Meshkat Alsadat, M. Soltanieh, S.A. Mousavi, A. Ghadimi, Gas permeation and sorption properties of poly(amide-12-b-ethyleneoxide)(Pebax1074)/SAPO-34 mixed matrix membrane for CO2/CH4 and CO2/N2 separation, J. Ind. Eng. Chem. 27 (2015) 223-239. [19] Y.B. Liu, G.D. Gao, C.D. Vecitis, Prospects of an electroactive carbon nanotube membrane toward environmental applications, Acc. Chem. Res. 53 (12) (2020) 2892-2902. [20] W.F. Zhu, F. Liu, M.M. Gou, R.L. Guo, X.Q. Li, Mixed matrix membrane containing metal oxide nanosheets for efficient CO2 separation, Green Chem. Eng. 2 (1) (2021) 132-143. [21] C.Y. Chuah, J. Lee, Y.P. Bao, J.H. Song, T.H. Bae, High-performance porous carbon-zeolite mixed-matrix membranes for CO2/N2 separation, J. Membr. Sci. 622 (2021) 119031. [22] Y.S. Li, F.Y. Liang, H. Bux, A. Feldhoff, W.S. Yang, J. Caro, Molecular sieve membrane: Supported metal-organic framework with high hydrogen selectivity, Angew. Chem. Int. Ed. 49 (3) (2010) 548-551. [23] M.H. Nematollahi, P.J. Carvalho, J.A.P. Coutinho, R. Abedini, Recent progress on Pebax-based thin film nanocomposite membranes for CO2 capture: The state of the art and future outlooks, Energy Fuels 36 (20) (2022) 12367-12428. [24] Q.H. Qian, P.A. Asinger, M.J. Lee, G. Han, K.M. Rodriguez, S. Lin, F.M. Benedetti, A.X. Wu, W.S. Chi, Z.P. Smith, MOF-based membranes for gas separations, Chem. Rev. 120 (16) (2020) 8161-8266. [25] A. Kirchon, L. Feng, H.F. Drake, E.A. Joseph, H.C. Zhou, From fundamentals to applications: A toolbox for robust and multifunctional MOF materials, Chem. Soc. Rev. 47 (23) (2018) 8611-8638. [26] V. Nafisi, M.B. Hagg, Development of dual layer of ZIF-8/PEBAX-2533 mixed matrix membrane for CO2 capture, J. Membr. Sci. 459 (2014) 244-255. [27] D. Nobakht, R. Abedini, A new ternary Pebax®1657/maltitol/ZIF-8 mixed matrix membrane for efficient CO2 separation, Process. Saf. Environ. Prot. 170 (2023) 709-719. [28] M.S. Maleh, A. Raisi, Experimental and modeling study on interfacial morphology of ZIF-67/Pebax-2533 mixed matrix membranes for CO2 separation applications, Surf. Interfaces 38 (2023) 102846. [29] M.M. Gou, W.F. Zhu, Y.Y. Sun, R.L. Guo, Introducing two-dimensional metal-organic frameworks with axial coordination anion into Pebax for CO2/CH4 separation, Sep. Purif. Technol. 259 (2021) 118107. [30] R. Thur, N. Van Velthoven, S. Slootmaekers, J. Didden, R. Verbeke, S. Smolders, M. Dickmann, W. Egger, D. De Vos, I.F.J. Vankelecom, Bipyridine-based UiO-67 as novel filler in mixed-matrix membranes for CO2-selective gas separation, J. Membr. Sci. 576 (2019) 78-87. [31] J.H. Cavka, S. Jakobsen, U. Olsbye, N. Guillou, C. Lamberti, S. Bordiga, K.P. Lillerud, A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability, J. Am. Chem. Soc. 130 (42) (2008) 13850-13851. [32] M.J. Katz, Z.J. Brown, Y.J. Colon, P.W. Siu, K.A. Scheidt, R.Q. Snurr, J.T. Hupp, O.K. Farha, A facile synthesis of UiO-66, UiO-67 and their derivatives, Chem. Commun. 49 (82) (2013) 9449-9451. [33] L. Braglia, E. Borfecchia, A. Martini, A.L. Bugaev, A.V. Soldatov, S. OEien-OEdegaard, B.T. Loenstad-Bleken, U. Olsbye, K.P. Lillerud, K.A. Lomachenko, G. Agostini, M. Manzoli, C. Lamberti, The duality of UiO-67-Pt MOFs: Connecting treatment conditions and encapsulated Pt species by operando XAS, Phys. Chem. Chem. Phys. 19 (40) (2017) 27489-27507. [34] E. Nezhadmoghadam, M.P. Chenar, M. Omidkhah, A. Nezhadmoghadam, R. Abedini, Aminosilane grafted Matrimid 5218/nano-silica mixed matrix membrane for CO2/light gases separation, Korean J. Chem. Eng. 35 (2) (2018) 526-534. [35] H.R. Amedi, M. Aghajani, Aminosilane-functionalized ZIF-8/PEBA mixed matrix membrane for gas separation application, Microporous Mesoporous Mater. 247 (2017) 124-135. [36] M. Waqas Anjum, F. Vermoortele, A.L. Khan, B. Bueken, D.E. De Vos, I.F.J. Vankelecom, Modulated UiO-66-based mixed-matrix membranes for CO2 separation, ACS Appl. Mater. Interfaces 7 (45) (2015) 25193-25201. [37] R. Abedini, A. Mosayebi, M. Mokhtari, Improved CO2 separation of azide cross-linked PMP mixed matrix membrane embedded by nano-CuBTC metal organic framework, Process. Saf. Environ. Prot. 114 (2018) 229-239. [38] X. Dong, Y.C. Lin, Y.Q. Ma, L. Zhao, N-contaning UiO-67 derived multifunctional hybrid materials as highly effective adsorbents for removal of Congo red, Inorg. Chim. Acta 510 (2020) 119748. [39] M.R. Hasan, L. Paseta, M. Malankowska, C. Tellez, J. Coronas, Synthesis of ZIF-94 from recycled mother liquors: Study of the influence of its loading on postcombustion CO2 capture with Pebax based mixed matrix membranes, Adv. Sustain. Syst. 6 (1) (2022) 2100317. [40] D. Nobakht, R. Abedini, Improved gas separation performance of Pebax®1657 membrane modified by poly-alcoholic compounds, J. Environ. Chem. Eng. 10 (3) (2022) 107568. [41] S. Chavan, J.G. Vitillo, D. Gianolio, O. Zavorotynska, B. Civalleri, S. Jakobsen, M.H. Nilsen, L. Valenzano, C. Lamberti, K.P. Lillerud, S. Bordiga, H2 storage in isostructural UiO-67 and UiO-66 MOFs, Phys. Chem. Chem. Phys. 14 (5) (2012) 1614-1626. [42] T. Kobayashi, K. Aoki, M. Sadakiyo, Synthesis of a porous MOF, UiO-67-NSO2CF3, through post-synthetic method, Inorg. Chem. Commun. 131 (2021) 108794. [43] H.H. Fei, S.M. Cohen, A robust, catalytic metal-organic framework with open 2,2'-bipyridine sites, Chem. Commun. 50 (37) (2014) 4810-4812. [44] J. Sienkiewicz-Gromiuk, H. Gluchowska, B. Tarasiuk, L. Mazur, Z. Rzaczynska, Synthesis, structural, spectroscopic and thermal characteristics of disubstituted biphenyl derivative: Biphenyl-4,4’-diacetic acid, J. Mol. Struct. 1070 (2014) 110-116. [45] M. Mozafari, R. Abedini, A. Rahimpour, Zr-MOFs-incorporated thin film nanocomposite Pebax 1657 membranes dip-coated on polymethylpentyne layer for efficient separation of CO2/CH4, J. Mater. Chem. A 6 (26) (2018) 12380-12392. [46] F. Ranjbar, M. Ghorbani, R. Abedini, M. Ghasemi, Thin film nanocomposite (TFN) membrane comprising Pebax® 1657 and porous organic polymers (POP) for favored CO2 separation, J. Membr. Sci. Res. 8 (2022) 535579. [47] G. Alizadeh, R. Abedini, A. Rahimpour, M. Kheirtalab, Effect of MIL-53 metal organic frameworks on performance of Pebax/PEG mixed matrix membrane for CO2/CH4 separation, J. App. Res. Chem. Polym. Eng. 3 (2019) 61-79. [48] M. Kheirtalab, R. Abedini, M. Ghorbani, A novel ternary mixed matrix membrane comprising polyvinyl alcohol (PVA)-modified poly (ether-block-amide)(Pebax®1657)/graphene oxide nanoparticles for CO2 separation, Process. Saf. Environ. Prot. 144 (2020) 208-224. [49] F. Dorosti, M. Omidkhah, R. Abedini, Fabrication and characterization of Matrimid/MIL-53 mixed matrix membrane for CO2/CH4 separation, Chem. Eng. Res. Des. 92 (11) (2014) 2439-2448. [50] M.H. Nematollahi, A.H.S. Dehaghani, R. Abedini, CO2/CH4 separation with poly(4-methyl-1-pentyne) (TPX) based mixed matrix membrane filled with Al2O3 nanoparticles, Korean J. Chem. Eng. 33 (2) (2016) 657-665. [51] R. Abedini, M. Omidkhah, F. Dorosti, Highly permeable poly(4-methyl-1-pentyne)/NH2-MIL 53 (Al) mixed matrix membrane for CO2/CH4 separation, RSC Adv. 4 (69) (2014) 36522-36537. [52] S. Tan, Q. Fu, J.M.P. Scofield, J. Kim, P.A. Gurr, K. Ladewig, A. Blencowe, G.G. Qiao, Cyclodextrin-based supramolecular polymeric nanoparticles for next generation gas separation membranes, J. Mater. Chem. A 3 (28) (2015) 14876-14886. [53] S. Babaei, M.H. Nematollahi, R. Abedini, Pure and mixed gas permeation study of silica incorporated polyurethane-urea membrane modified by MOCA chain extender, Can. J. Chem. Eng. 98 (7) (2020) 1543-1557. [54] S.K. Salestan, A. Rahimpour, R. Abedini, Experimental and theoretical studies of biopolymers on the efficient CO2/CH4 separation of thin-film Pebax®1657 membrane, Chem. Eng. Process. Process. Intensif. 163 (2021) 108366. [55] H. Hassanzadeh, R. Abedini, M. Ghorbani, CO2 separation over N2 and CH4 light gases in sorbitol-modified poly(ether-block-amide) (Pebax 2533) membrane, Ind. Eng. Chem. Res. 61 (36) (2022) 13669-13682. [56] M.M. Rahman, V. Filiz, S. Shishatskiy, C. Abetz, S. Neumann, S. Bolmer, M.M. Khan, V. Abetz, PEBAX® with PEG functionalized POSS as nanocomposite membranes for CO2 separation, J. Membr. Sci. 437 (2013) 286-297. [57] M. Raouf, R. Abedini, M. Omidkhah, E. Nezhadmoghadam, A favored CO2 separation over light gases using mixed matrix membrane comprising polysulfone/polyethylene glycol and graphene hydroxyl nanoparticles, Process. Saf. Environ. Prot. 133 (2020) 394-407. [58] H.L. Cong, M. Radosz, B.F. Towler, Y.Q. Shen, Polymer-inorganic nanocomposite membranes for gas separation, Sep. Purif. Technol. 55 (3) (2007) 281-291. [59] J.H. Kim, S.Y. Ha, Y.M. Lee, Gas permeation of poly(amide-6-b-ethylene oxide) copolymer, J. Membr. Sci. 190 (2) (2001) 179-193. [60] S. Khoshhal Salestan, K. Pirzadeh, A. Rahimpour, R. Abedini, Poly (ether-block amide) thin-film membranes containing functionalized MIL-101 MOFs for efficient separation of CO2/CH4, J. Environ. Chem. Eng. 9 (5) (2021) 105820. [61] W.F. Zhu, L.Z. Wang, H.H. Cao, R.L. Guo, C.F. Wang, Introducing defect-engineering 2D layered MOF nanosheets into Pebax matrix for CO2/CH4 separation, J. Membr. Sci. 669 (2023) 121305. [62] M. Ahmadi, S. Janakiram, S. Velioglu, A. Lindbrathen, B.A. Grimes, M. Hillestad, L.Y. Deng, Enabling simultaneous CO2 and water vapor removal by MOF-801/Pebax mixed matrix membranes: Molecular simulation and experimental study, Carbon Capture Sci. Technol. 13 (2024) 100307. [63] P.D. Sutrisna, E. Savitri, High gas permeability of nanoZIF-8/polymer-based mixed matrix membranes intended for biogas purification, J. Polym. Eng. 40 (6) (2020) 459-467. [64] A. Ehsani, M. Pakizeh, Synthesis, characterization and gas permeation study of ZIF-11/Pebax® 2533 mixed matrix membranes, J. Taiwan Inst. Chem. Eng. 66 (2016) 414-423. [65] S. Meshkat, S. Kaliaguine, D. Rodrigue, Comparison between ZIF-67 and ZIF-8 in Pebax® MH-1657 mixed matrix membranes for CO2 separation, Sep. Purif. Technol. 235 (2020) 116150. |
| [1] | Yuankai Pan, Xingmei Zhang, Wenwen He, Lan Zheng, Xiaolong Han. Dha Tab-COF filled PEBAX mixed matrix membranes for effective CO2/CH4 separation [J]. Chinese Journal of Chemical Engineering, 2025, 77(1): 123-134. |
| [2] | Xin Zheng, Shuai Ban, Bei Liu, Guangjin Chen. Strain-controlled graphdiyne membrane for CO2/CH4 separation: Firstprinciple and molecular dynamic simulation [J]. Chinese Journal of Chemical Engineering, 2020, 28(7): 1898-1903. |
| [3] | Chungang Xu, Xiaosen Li, Kefeng Yan, Xuke Ruan, Zhaoyang Chen, Zhiming Xia. Research progress in hydrate-based technologies and processes in China: A review [J]. Chinese Journal of Chemical Engineering, 2019, 27(9): 1998-2013. |
| [4] | Runlin Han, Yongli Xie, Xufeng Ma. Crosslinked P84 copolyimide/MXene mixed matrix membrane with excellent solvent resistance and permselectivity [J]. Chinese Journal of Chemical Engineering, 2019, 27(4): 877-883. |
| [5] | Xiaoli Ding, Xu Li, Hongyong Zhao, Ran Wang, Runqing Zhao, Hong Li, Yuzhong Zhang. Partial pore blockage and polymer chain rigidification phenomena in PEO/ZIF-8 mixed matrix membranes synthesized by in situ polymerization [J]. Chin.J.Chem.Eng., 2018, 26(3): 501-508. |
| [6] | Ming Wang, Zhi Wang, Song Zhao, Jixiao Wang, Shichang Wang. Recent advances on mixed matrix membranes for CO2 separation [J]. Chin.J.Chem.Eng., 2017, 25(11): 1581-1597. |
| [7] | LIU Sainan, LIU Gongping, WEI Wang, XIANGLI Fenjuan, JIN Wanqin . Ceramic Supported PDMS and PEGDA Composite Membranes for CO2 Separation [J]. Chin.J.Chem.Eng., 2013, 21(4): 348-356. |
| [8] | ZHU Yaqun, WANG Zhi, ZHANG Chenxin, WANG Jixiao, WANG Shichang. A Novel Membrane Prepared from Sodium Alginate Cross-linked with Sodium Tartrate for CO2 Capture [J]. Chin.J.Chem.Eng., 2013, 21(10): 1098-1105. |
| [9] | ZHOU Zhiyong, QIN Wei, DAI Youyuan. Extraction Equilibria of Trimellitic and[1,1'-Biphenyl]-2,2'-dicarboxylic Acid with 1-Octanol,50% TBP,and 10% TRPO in Kerosene [J]. , 2008, 16(6): 867-870. |
| [10] | WANG Tao, ZHANG Ying, REN Xiaoling. Biphenyl Bis[(π-cyclopentadienyl)iron]Dication as an Efficient Cationic Photoinitiator for Epoxy Polymerization [J]. , 2008, 16(5): 819-822. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
京公网安备 11010102001993号 
