Chin.J.Chem.Eng. ›› 2017, Vol. 25 ›› Issue (11): 1581-1597.DOI: 10.1016/j.cjche.2017.07.006
• Special Issue of Membranes and Membrane Processes based on Confined Mass Transfer • Previous Articles Next Articles
Ming Wang1,2,3,4, Zhi Wang1,2,3,4, Song Zhao1,2,3,4, Jixiao Wang1,2,3,4, Shichang Wang1,2,3,4
Received:
2017-02-28
Revised:
2017-07-02
Online:
2018-01-18
Published:
2017-11-28
Contact:
Zhi Wang,E-mail address:wangzhi@tju.edu.cn
Supported by:
Supported by the National Natural Science Foundation of China (21436009) and the Program of Introducing Talents of Discipline to Universities (B06006).
Ming Wang1,2,3,4, Zhi Wang1,2,3,4, Song Zhao1,2,3,4, Jixiao Wang1,2,3,4, Shichang Wang1,2,3,4
通讯作者:
Zhi Wang,E-mail address:wangzhi@tju.edu.cn
基金资助:
Supported by the National Natural Science Foundation of China (21436009) and the Program of Introducing Talents of Discipline to Universities (B06006).
Ming Wang, Zhi Wang, Song Zhao, Jixiao Wang, Shichang Wang. Recent advances on mixed matrix membranes for CO2 separation[J]. Chin.J.Chem.Eng., 2017, 25(11): 1581-1597.
Ming Wang, Zhi Wang, Song Zhao, Jixiao Wang, Shichang Wang. Recent advances on mixed matrix membranes for CO2 separation[J]. Chinese Journal of Chemical Engineering, 2017, 25(11): 1581-1597.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2017.07.006
[1] P. Bernardo, E. Drioli, G. Golemme, Membrane gas separation:A review/state of the art, Ind. Eng. Chem. Res. 48(2009) 4638-4663.[2] N. Du, H.B. Park, M.M. Dal-Cin, M.D. Guiver, Advances in high permeability polymeric membrane materials for CO2 separations, Energy Environ. Sci. 5(2012) 7306-7322.[3] D.F. Sanders, Z.P. Smith, R. Guo, L.M. Robeson, J.E. McGrath, D.R. Paul, B.D. Freeman, Energy-efficient polymeric gas separation membranes for a sustainable future:A review, Polymer 544(2013) 729-4761.[4] L.M. Robeson, The upper bound revisited, J. Membr. Sci. 320(2008) 390-400.[5] T.-S. Chung, L.Y. Jiang, Y. Li, S. Kulprathipanja, Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation, Prog. Polym. Sci. 32(2007) 483-507.[6] H. Cong, M. Radosz, B. Towler, Y. Shen, Polymer-inorganic nanocomposite membranes for gas separation, Sep. Purif. Technol. 55(2007) 281-291.[7] G. Dong, H. Li, V. Chen, Challenges and opportunities for mixed-matrix membranes for gas separation, J. Mater. Chem. A 1(2013) 4610-4630.[8] R. Nasir, H. Mukhtar, Z. Man, D.F. Mohshim, Material advancements in fabrication of mixed-matrix membranes, Chem. Eng. Technol. 36(2013) 717-727.[9] M. Rezakazemi, A. Ebadi Amooghin, M.M. Montazer-Rahmati, A.F. Ismail, T. Matsuura, State-of-the-art membrane based CO2 separation using mixed matrix membranes (MMMs):An overview on current status and future directions, Prog. Polym. Sci. 39(2014) 817-861.[10] Z. Tong, W.S.W. Ho, Facilitated transport membranes for CO2 separation and capture, Sep. Sci. Technol. 52(2017) 156-167.[11] S. Wang, X. Li, H. Wu, Z. Tian, Q. Xin, G. He, D. Peng, S. Chen, Y. Yin, Z. Jiang, M.D. Guiver, Advances in high permeability polymer-based membrane materials for CO2 separations, Energy Environ. Sci. 9(2016) 1863-1890.[12] Y. Li, T.-S. Chung, S. Kulprathipanja, Novel Ag+-zeolite/polymer mixed matrix membranes with a high CO2/CH4 selectivity, AIChE J. 53(2007) 610-616.[13] C.-Y. Liang, P. Uchytil, R. Petrychkovych, Y.-C. Lai, K. Friess, M. Sipek, M. Mohan Reddy, S.-Y. Suen, A comparison on gas separation between PES (polyethersulfone)/MMT (Na-montmorillonite) and PES/TiO2 mixed matrix membranes, Sep. Purif. Technol. 92(2012) 57-63.[14] R. Nasir, H. Mukhtar, Z. Man, M.S. Shaharun, M.Z. Abu Bakar, Effect of fixed carbon molecular sieve (CMS) loading and various di-ethanolamine (DEA) concentrations on the performance of a mixed matrix membrane for CO2/CH4 separation, RSC Adv. 5(2015) 60814-60822.[15] R. Nasir, H. Mukhtar, Z. Man, B.K. Dutta, M.S. Shaharun, M.Z. Abu Bakar, Mixed matrix membrane performance enhancement using alkanolamine solution, J. Membr. Sci. 483(2015) 84-93.[16] D. ?en, H. Kal?pç?lar, L. Yilmaz, Development of polycarbonate based zeolite 4A filled mixed matrix gas separation membranes, J. Membr. Sci. 303(2007) 194-203.[17] R. Adams, C. Carson, J. Ward, R. Tannenbaum, W. Koros, Metal organic framework mixed matrix membranes for gas separations, Microporous Mesoporous Mater. 131(2010) 13-20.[18] J. Ahmad, M.B. Hägg, Effect of zeolite preheat treatment and membrane post heat treatment on the performance of polyvinyl acetate/zeolite 4A mixed matrix membrane, Sep. Purif. Technol. 115(2013) 163-171.[19] J. Ahmad, M.-B. Hägg, Preparation and characterization of polyvinyl acetate/zeolite 4A mixed matrix membrane for gas separation, J. Membr. Sci. 427(2013) 73-84.[20] A.L. Khan, C. Klaysom, A. Gahlaut, X. Li, I.F.J. Vankelecom, SPEEK and functionalized mesoporous MCM-41 mixed matrix membranes for CO2 separations, J. Mater. Chem. 22(2012) 20057-20064.[21] Q. Xin, T. Liu, Z. Li, S. Wang, Y. Li, Z. Li, J. Ouyang, Z. Jiang, H. Wu, Mixed matrix membranes composed of sulfonated poly(ether ether ketone) and a sulfonated metal-organic framework for gas separation, J. Membr. Sci. 488(2015) 67-78.[22] L. Ge, W. Zhou, V. Rudolph, Z. Zhu, Mixed matrix membranes incorporated with size-reduced Cu-BTC for improved gas separation, J. Mater. Chem. A 1(2013) 6350-6358.[23] A.L. Ahmad, Z.A. Jawad, S.C. Low, S.H.S. Zein, A cellulose acetate/multi-walled carbon nanotube mixed matrix membrane for CO2/N2 separation, J. Membr. Sci. 451(2014) 55-66.[24] H. Sanaeepur, A. Kargari, B. Nasernejad, A. Ebadi Amooghin, M. Omidkhah, A novel CO2+ exchanged zeolite Y/cellulose acetate mixed matrix membrane for CO2/N2 separation, J. Taiwan Inst. Chem. Eng. 60(2016) 403-413.[25] D.Q. Vu, W.J. Koros, S.J. Miller, Effect of condensable impurity in CO2/CH4 gas feeds on performance of mixed matrix membranes using carbon molecular sieves, J. Membr. Sci. 221(2003) 233-239.[26] M. Peydayesh, S. Asarehpour, T. Mohammadi, O. Bakhtiari, Preparation and characterization of SAPO-34-Matrimid® 5218 mixed matrix membranes for CO2/CH4 separation, Chem. Eng. Res. Des. 91(2013) 1335-1342.[27] F. Dorosti, M. Omidkhah, R. Abedini, Fabrication and characterization of Matrimid/MIL-53 mixed matrix membrane for CO2/CH4 separation, Chem. Eng. Res. Des. 92(2014) 2439-2448.[28] A.L. Khan, S.P. Sree, J.A. Martens, M.T. Raza, I.F.J. Vankelecom, Mixed matrix membranes comprising of matrimid and mesoporous COK-12:Preparation and gas separation properties, J. Membr. Sci. 495(2015) 471-478.[29] M. Waqas Anjum, B. Bueken, D. De Vos, I.F.J. Vankelecom, MIL-125(Ti) based mixed matrix membranes for CO2 separation from CH4 and N2, J. Membr. Sci. 502(2016) 21-28.[30] D.Q. Vu, W.J. Koros, S.J. Miller, Mixed matrix membranes using carbon molecular sieves-I. Preparation and experimental results, J. Membr. Sci. 211(2003) 311-334.[31] A.F. Bushell, M.P. Attfield, C.R. Mason, P.M. Budd, Y. Yampolskii, L. Starannikova, A. Rebrov, F. Bazzarelli, P. Bernardo, J. Carolus Jansen, M. Lan?, K. Friess, V. Shantarovich, V. Gustov, V. Isaeva, Gas permeation parameters of mixed matrix membranes based on the polymer of intrinsic microporosity PIM-1 and the zeolitic imidazolate framework ZIF-8, J. Membr. Sci. 427(2013) 48-62.[32] M.M. Khan, V. Filiz, G. Bengtson, S. Shishatskiy, M.M. Rahman, J. Lillepaerg, V. Abetz, Enhanced gas permeability by fabricating mixed matrix membranes of functionalized multiwalled carbon nanotubes and polymers of intrinsic microporosity (PIM), J. Membr. Sci. 436(2013) 109-120.[33] T. Mitra, R.S. Bhavsar, D.J. Adams, P.M. Budd, A.I. Cooper, PIM-1 mixed matrix membranes for gas separations using cost-effective hypercrosslinked nanoparticle fillers, Chem. Commun. 52(2016) 5581-5584.[34] N. Tien-Binh, H. Vinh-Thang, X.Y. Chen, D. Rodrigue, S. Kaliaguine, Crosslinked MOF-polymer to enhance gas separation of mixed matrix membranes, J. Membr. Sci. 520(2016) 941-950.[35] Z. Tian, S. Wang, Y. Wang, X. Ma, K. Cao, D. Peng, X. Wu, H. Wu, Z. Jiang, Enhanced gas separation performance of mixed matrix membranes from graphitic carbon nitride nanosheets and polymers of intrinsic microporosity, J. Membr. Sci. 514(2016) 15-24.[36] H. Wu, X. Li, Y. Li, S. Wang, R. Guo, Z. Jiang, C. Wu, Q. Xin, X. Lu, Facilitated transport mixed matrix membranes incorporated with amine functionalized MCM-41 for enhanced gas separation properties, J. Membr. Sci. 465(2014) 78-90.[37] D. Zhao, J. Ren, H. Li, X. Li, M. Deng, Gas separation properties of poly(amide-6-bethylene oxide)/amino modified multi-walled carbon nanotubes mixed matrix membranes, J. Membr. Sci. 467(2014) 41-47.[38] D. Zhao, J. Ren, H. Li, K. Hua, M. Deng, Poly(amide-6-b-ethylene oxide)/SAPO-34 mixed matrix membrane for CO2 separation, J. Energy Chem. 23(2014) 227-234.[39] G. Dong, J. Hou, J. Wang, Y. Zhang, V. Chen, J. Liu, Enhanced CO2/N2 separation by porous reduced graphene oxide/Pebax mixed matrix membranes, J. Membr. Sci. 520(2016) 860-868.[40] V.Nafisi, M.-B.Hägg, Development ofdual layer of ZIF-8/PEBAX-2533 mixedmatrix membrane for CO2 capture, J. Membr. Sci. 459(2014) 244-255.[41] H. Rabiee, S. Meshkat Alsadat, M. Soltanieh, S.A. Mousavi, A. Ghadimi, Gas permeation and sorption properties of poly(amide-12-b-ethyleneoxide)(Pebax1074)/SAPO-34 mixed matrix membrane for CO2/CH4 and CO2/N2 separation, J. Ind. Eng. Chem. 27(2015) 223-239.[42] S. Zhao, X. Cao, Z. Ma, Z. Wang, Z. Qiao, J. Wang, S. Wang, Mixed-matrix membranes for CO2/N2 separation comprising a poly(vinylamine) matrix and metal-organic frameworks, Ind. Eng. Chem. Res. 54(2015) 5139-5148.[43] J.Y. Liao, Z. Wang, C.Y. Gao, M. Wang, K. Yan, X.M. Xie, S. Zhao, J.X. Wang, S.C. Wang, A high performance PVAm-HT membrane containing high-speed facilitated transport channels for CO2 separation, J. Mater. Chem. A 3(2015) 16746-16761.[44] A.F. Ismail, P.S. Goh, S.M. Sanip, M. Aziz, Transport and separation properties of carbon nanotube-mixed matrix membrane, Sep. Purif. Technol. 70(2009) 12-26.[45] P.S. Goh, A.F. Ismail, S.M. Sanip, B.C. Ng, M. Aziz, Recent advances of inorganic fillers in mixed matrix membrane for gas separation, Sep. Purif. Technol. 81(2011) 243-264.[46] D. Bastani, N. Esmaeili, M. Asadollahi, Polymeric mixed matrix membranes containing zeolites as a filler for gas separation applications:A review, J. Ind. Eng. Chem. 19(2013) 375-393.[47] I. Erucar, G. Yilmaz, S. Keskin, Recent advances in metal-organic framework-based mixed matrix membranes, Chem. Asian J. 8(2013) 1692-1704.[48] B. Seoane, J. Coronas, I. Gascon, M.E. Benavides, O. Karvan, J. Caro, F. Kapteijn, J. Gascon, Metal-organic framework based mixed matrix membranes:A solution for highly efficient CO2 capture? Chem. Soc. Rev. 44(2015) 2421-2454.[49] H.B. Tanh Jeazet, C. Staudt, C. Janiak, Metal-organic frameworks in mixed-matrix membranes for gas separation, Dalton Trans. 41(2012) 14003-14027.[50] M. Waqas Anjum, F. de Clippel, J. Didden, A. Laeeq Khan, S. Couck, G.V. Baron, J.F.M. Denayer, B.F. Sels, I.F.J. Vankelecom, Polyimide mixed matrix membranes for CO2 separations using carbon-silica nanocomposite fillers, J. Membr. Sci. 495(2015) 121-129.[51] L. Xiang, Y. Pan, G. Zeng, J. Jiang, J. Chen, C. Wang, Preparation of poly(ether-blockamide)/attapulgite mixed matrix membranes for CO2/N2 separation, J. Membr. Sci. 500(2016) 66-75.[52] A. K?l?ç, Ç. Atalay-Oral, A. Sirkecio?lu, ?.B. Tantekin-Ersolmaz, M.G. Ahunbay, Sod-ZMOF/Matrimid® mixed matrix membranes for CO2 separation, J. Membr. Sci. 489(2015) 81-89.[53] R. Abedini, M. Omidkhah, F. Dorosti, Hydrogen separation and purification with poly (4-methyl-1-pentyne)/MIL 53 mixed matrix membrane based on reverse selectivity, Int. J. Hydrogen Energy 39(2014) 7897-7909.[54] T. Rodenas, M. van Dalen, E. García-Pérez, P. Serra-Crespo, B. Zornoza, F. Kapteijn, J. Gascon, Visualizing MOF mixed matrix membranes at the nanoscale:Towards structure-performance relationships in CO2/CH4 separation over NH2-MIL-53(Al)@PI, Adv. Funct. Mater. 24(2014) 249-256.[55] M. Naseri, S.F. Mousavi, T. Mohammadi, O. Bakhtiari, Synthesis and gas transport performance of MIL-101/Matrimid mixed matrix membranes, J. Ind. Eng. Chem. 29(2015) 249-256.[56] B. Seoane, C. Téllez, J. Coronas, C. Staudt, NH2-MIL-53(Al) and NH2-MIL-101(Al) in sulfur-containing copolyimide mixed matrix membranes for gas separation, Sep. Purif. Technol. 111(2013) 72-81.[57] T. Rodenas, M. van Dalen, P. Serra-Crespo, F. Kapteijn, J. Gascon, Mixed matrix membranes based on NH2-functionalized MIL-type MOFs:Influence of structural and operational parameters on the CO2/CH4 separation performance, Microporous Mesoporous Mater. 192(2014) 35-42.[58] X. Guo, H. Huang, Y. Ban, Q. Yang, Y. Xiao, Y. Li, W. Yang, C. Zhong, Mixed matrix membranes incorporated with amine-functionalized titanium-based metal-organic framework for CO2/CH4 separation, J. Membr. Sci. 478(2015) 130-139.[59] J. Shen, G. Liu, K. Huang, Q. Li, K. Guan, Y. Li, W. Jin, UiO-66-polyether block amide mixed matrix membranes for CO2 separation, J. Membr. Sci. 513(2016) 155-165.[60] L. Hao, K.-S. Liao, T.-S. Chung, Photo-oxidative PIM-1 based mixed matrix membranes with superior gas separation performance, J. Mater. Chem. A 3(2015) 17273-17281.[61] M. Askari, T.-S. Chung, Natural gas purification and olefin/paraffin separation using thermal cross-linkable co-polyimide/ZIF-8 mixed matrix membranes, J. Membr. Sci. 444(2013) 173-183.[62] V. Nafisi, M.-B. Hägg, Gas separation properties of ZIF-8/6FDA-durene diamine mixed matrix membrane, Sep. Purif. Technol. 128(2014) 31-38.[63] W.S. Chi, S. Hwang, S.-J. Lee, S. Park, Y.-S. Bae, D.Y. Ryu, J.H. Kim, J. Kim, Mixed matrix membranes consisting of SEBS block copolymers and size-controlled ZIF-8 nanoparticles for CO2 capture, J. Membr. Sci. 495(2015) 479-488.[64] S. Hwang, W.S. Chi, S.J. Lee, S.H. Im, J.H. Kim, J. Kim, Hollow ZIF-8 nanoparticles improve the permeability of mixed matrix membranes for CO2/CH4 gas separation, J. Membr. Sci. 480(2015) 11-19.[65] A. Ehsani, M. Pakizeh, Synthesis, characterization and gas permeation study of ZIF-11/Pebax® 2533 mixed matrix membranes, J. Taiwan Inst. Chem. Eng. 66(2016) 414-423.[66] X. Li, L. Ma, H. Zhang, S. Wang, Z. Jiang, R. Guo, H. Wu, X. Cao, J. Yang, B. Wang, Synergistic effect of combining carbon nanotubes and graphene oxide in mixed matrix membranes for efficient CO2 separation, J. Membr. Sci. 479(2015) 1-10.[67] L. Dong, M. Chen, J. Li, D. Shi, W. Dong, X. Li, Y. Bai, Metal-organic frameworkgraphene oxide composites:a facile method to highly improve the CO2 separation performance of mixed matrix membranes, J. Membr. Sci. 520(2016) 801-811.[68] J. Zhao, Z. Wang, J. Wang, S. Wang, High-performance membranes comprising polyaniline nanoparticles incorporated into polyvinylamine matrix for CO2/N2 separation, J. Membr. Sci. 403-404(2012) 203-215.[69] S. Zhao, Z. Wang, Z. Qiao, X. Wei, C. Zhang, J. Wang, S. Wang, Gas separation membrane with CO2-facilitated transport highway constructed from amino carrier containing nanorods and macromolecules, J. Mater. Chem. A 1(2013) 246-249.[70] X. Li, M. Wang, S. Wang, Y. Li, Z. Jiang, R. Guo, H. Wu, X. Cao, J. Yang, B. Wang, Constructing CO2 transport passageways in Matrimid® membranes using nanohydrogels for efficient carbon capture, J. Membr. Sci. 474(2015) 156-166.[71] X. Li, Z. Jiang, Y. Wu, H. Zhang, Y. Cheng, R. Guo, H. Wu, High-performance composite membranes incorporated with carboxylic acid nanogels for CO2 separation, J. Membr. Sci. 495(2015) 72-80.[72] S. Wang, Z. Tian, J. Feng, H. Wu, Y. Li, Y. Liu, X. Li, Q. Xin, Z. Jiang, Enhanced CO2 separation properties by incorporating poly(ethylene glycol)-containing polymeric submicrospheres into polyimide membrane, J. Membr. Sci. 473(2015) 310-317.[73] L.M. Robeson, Polymer blends in membrane transport processes, Ind. Eng. Chem. Res. 49(2010) 11859-11865.[74] H.A. Mannan, H. Mukhtar, T. Murugesan, R. Nasir, D.F. Mohshim, A. Mushtaq, Recent applications of polymer blends in gas separation membranes, Chem. Eng. Technol. 36(2013) 1838-1846.[75] M. Wang, Z. Wang, N. Li, J. Liao, S. Zhao, J. Wang, S. Wang, Relationship between polymer-filler interfaces in separation layers and gas transport properties of mixed matrix composite membranes, J. Membr. Sci. 495(2015) 252-268.[76] H. Sanaeepur, A. Kargari, B. Nasernejad, Aminosilane-functionalization of a nanoporous Y-type zeolite for application in a cellulose acetate based mixed matrix membrane for CO2 separation, RSC Adv. 4(2014) 63966-63976.[77] A. Ebadi Amooghin, M. Omidkhah, A. Kargari, The effects of aminosilane grafting on NaY zeolite-Matrimid® 5218 mixed matrix membranes for CO2/CH4 separation, J. Membr. Sci. 490(2015) 364-379.[78] M. Laghaei, M. Sadeghi, B. Ghalei, M. Shahrooz, The role of compatibility between polymeric matrix and silane coupling agents on the performance of mixed matrix membranes:Polyethersulfone/MCM-41, J. Membr. Sci. 513(2016) 20-32.[79] L. Dong, C. Zhang, Y. Bai, D. Shi, X. Li, H. Zhang, M. Chen, High-performance PEBA2533-functional MMT mixed matrix membrane containing high-speed facilitated transport channels for CO2/N2 separation, ACS Sustain. Chem. Eng. 4(2016) 3486-3496.[80] B. Zornoza, C. Téllez, J. Coronas, O. Esekhile, W.J. Koros, Mixed matrix membranes based on 6FDA polyimide with silica and zeolite microsphere dispersed phases, AIChE J. 61(2015) 4481-4490.[81] M. Loloei, M. Omidkhah, A. Moghadassi, A.E. Amooghin, Preparation and characterization of Matrimid® 5218 based binary and ternary mixed matrix membranes for CO2 separation, Int. J. Greenhouse Gas Control 39(2015) 225-235.[82] Y.C. Hudiono, T.K. Carlisle, J.E. Bara, Y. Zhang, D.L. Gin, R.D. Noble, A threecomponent mixed-matrix membrane with enhanced CO2 separation properties based on zeolites and ionic liquid materials, J. Membr. Sci. 350(2010) 117-123.[83] Y.C. Hudiono, T.K. Carlisle, A.L. LaFrate, D.L. Gin, R.D. Noble, Novel mixed matrix membranes based on polymerizable room-temperature ionic liquids and SAPO-34 particles to improve CO2 separation, J. Membr. Sci. 370(2011) 141-148.[84] L. Hao, P. Li, T. Yang, T.-S. Chung, Room temperature ionic liquid/ZIF-8 mixedmatrix membranes for natural gas sweetening and post-combustion CO2 capture, J. Membr. Sci. 436(2013) 221-231.[85] C. Casado-Coterillo, A. Fernandez-Barquin, B. Zornoza, C. Tellez, J. Coronas, A. Irabien, Synthesis and characterisation of MOF/ionic liquid/chitosan mixed matrix membranes for CO2/N2 separation, RSC Adv. 5(2015) 102350-102361.[86] H. Li, L. Tuo, K. Yang, H.-K. Jeong, Y. Dai, G. He, W. Zhao, Simultaneous enhancement of mechanical properties and CO2 selectivity of ZIF-8 mixed matrix membranes:Interfacial toughening effect of ionic liquid, J. Membr. Sci. 511(2016) 130-142.[87] Q. Xin, J. Ouyang, T. Liu, Z. Li, Z. Li, Y. Liu, S. Wang, H. Wu, Z. Jiang, X. Cao, Enhanced interfacial interaction and CO2 separation performance of mixed matrix membrane by incorporating polyethylenimine-decorated metal-organic frameworks, ACS Appl. Mater. Interfaces 7(2015) 1065-1077.[88] X. Li, Y. Cheng, H. Zhang, S. Wang, Z. Jiang, R. Guo, H. Wu, Efficient CO2 capture by functionalized graphene oxide nanosheets as fillers to fabricate multipermselective mixed matrix membranes, ACS Appl. Mater. Interfaces 7(2015) 5528-5537.[89] R. Lin, L. Ge, L. Hou, E. Strounina, V. Rudolph, Z. Zhu, Mixed matrix membranes with strengthened MOFs/polymer interfacial interaction and improved membrane performance, ACS Appl. Mater. Interfaces 6(2014) 5609-5618.[90] Z. Wang, D. Wang, S. Zhang, L. Hu, J. Jin, Interfacial design of mixed matrix membranesfor improved gasseparation performance, Adv. Mater.28(2016) 3399-3405.[91] S. Shahid, K. Nijmeijer, S. Nehache, I. Vankelecom, A. Deratani, D. Quemener, MOF-mixed matrix membranes:Precise dispersion of MOF particles with better compatibility via a particlefusion approach for enhanced gas separation properties, J. Membr. Sci. 492(2015) 21-31.[92] N. Tien-Binh, H. Vinh-Thang, X.Y. Chen, D. Rodrigue, S. Kaliaguine, Polymer functionalization to enhance interface quality of mixed matrix membranes for high CO2/CH4 gas separation, J. Mater. Chem. A 3(2015) 15202-15213.[93] Ekiner, O.M., Kulkarni, S.S., Process for making hollow fiber mixed matrix membranes, U.S. Patent 6663805, 2003.[94] L.Y. Jiang, T.S. Chung, C. Cao, Z. Huang, S. Kulprathipanja, Fundamental understanding of nano-sized zeolite distribution in the formation of the mixed matrix singleand dual-layer asymmetric hollow fiber membranes, J. Membr. Sci. 252(2005) 89-100.[95] L.Y. Jiang, T.S. Chung, S. Kulprathipanja, An investigation to revitalize the separation performance of hollow fibers with a thin mixed matrix composite skin for gas separation, J. Membr. Sci. 276(2006) 113-125.[96] Y. Li, T. Chung, Z. Huang, S. Kulprathipanja, Dual-layer polyethersulfone (PES)/BTDA-TDI/MDI co-polyimide (P84) hollow fiber membranes with a submicron PES-zeolite beta mixed matrix dense-selective layer for gas separation, J. Membr. Sci. 277(2006) 28-37.[97] L.Y. Jiang, T.S. Chung, S. Kulprathipanja, Fabrication of mixed matrix hollow fibers with intimate polymer-zeolite interface for gas separation, AIChE J. 52(2006) 2898-2908.[98] H.Z. Chen, Y.C. Xiao, T.-S. Chung, Multi-layer composite hollow fiber membranes derived from poly(ethylene glycol) (PEG) containing hybrid materials for CO2/N2 separation, J. Membr. Sci. 381(2011) 211-220.[99] D.F. Li, T.-S. Chung, R. Wang, Y. Liu, Fabrication of fluoropolyimide/polyethersulfone (PES) dual-layer asymmetric hollow fiber membranes for gas separation, J. Membr. Sci. 198(2002) 211-223.[100] S. Kulprathipanja, J. Charoenphol, Mixed matrix membrane for separation of gases, U.S. Patents 6726744B2, 2004.[101] S. Kulprathipanja, J. Soontraratpong, J.J. Chiou, Mixed matrix membrane for gas separation, U.S. Patents 7344585B1, 2008.[102] F. de Clippel, A.L. Khan, A. Cano-Odena, M. Dusselier, K. Vanherck, L. Peng, S. Oswald, L. Giebeler, S. Corthals, B. Kenens, J.F.M. Denayer, P.A. Jacobs, I.F.J. Vankelecom, B.F. Sels, CO2 reverse selective mixed matrix membranes for H2 purification by incorporation of carbon-silica fillers, J. Mater. Chem. A 1(2013) 945-953.[103] J. Wang, Y. Li, Z. Zhang, Z. Hao, Mesoporous KIT-6 silica-polydimethylsiloxane (PDMS) mixed matrix membranes for gas separation, J. Mater. Chem. A 3(2015) 8650-8658.[104] M.M. Khan, V. Filiz, G. Bengtson, S.Shishatskiy, M. Rahman, V. Abetz, Functionalized carbon nanotubes mixed matrix membranes of polymers of intrinsic microporosity for gas separation, Nanoscale Res. Lett. 7(2012) 1-12.[105] E. Ahmadpour, M.V. Sarfaraz, R.M. Behbahani, A.A. Shamsabadi, M. Aghajani, Fabrication of mixed matrix membranes containing TiO2 nanoparticles in Pebax 1657 as a copolymer on an ultra-porous PVC support, J. Nat. Gas Sci. Eng. 35(Part A) (2016) 33-41.[106] Y. Shen, H. Wang, X. Zhang, Y. Zhang, MoS2 nanosheets functionalized composite mixed matrix membrane for enhanced CO2 capture via surface drop-coating method, ACS Appl. Mater. Interfaces 8(2016) 23371-23378.[107] K. Zarshenas, A. Raisi, A. Aroujalian, Mixed matrix membrane of nano-zeolite NaX/poly (ether-block-amide) for gas separation applications, J. Membr. Sci. 510(2016) 270-283.[108] T.Li,Y.Pan,K.-V.Peinemann,Z.Lai,Carbondioxideselectivemixedmatrixcomposite membrane containing ZIF-7 nano-fillers, J. Membr. Sci. 425-426(2013) 235-242.[109] A. Jomekian, R.M. Behbahani, T. Mohammadi, A. Kargari, CO2/CH4 separation by high performance co-casted ZIF-8/Pebax 1657/PES mixed matrix membrane, J. Nat. Gas Sci. Eng. 31(2016) 562-574.[110] J. Kim, Q. Fu, J.M.P. Scofield, S.E. Kentish, G.G. Qiao, Ultra-thin film composite mixed matrix membranes incorporating iron(Ⅲ)-dopamine nanoparticles for CO2 separation, Nano 8(2016) 8312-8323.[111] W. Salim, W.S.W. Ho, Recent developments on nanostructured polymer-based membranes, Curr. Opin. Chem. Eng. 8(2015) 76-82.[112] X. Yu, Z. Wang, J. Zhao, F. Yuan, S. Li, J. Wang, S. Wang, An effective method to improve the performance of fixed carrier membrane via incorporation of CO2-selective adsorptive silica nanoparticles, Chin. J. Chem. Eng. 19(2011) 821-832.[113] J.Y. Liao, Z. Wang, C.Y. Gao, S.C. Li, Z.H. Qiao, M. Wang, S. Zhao, X.M. Xie, J.X. Wang, S.C. Wang, Fabrication of high-performance facilitated transport membranes for CO2 separation, Chem. Sci. 5(2014) 2843-2849.[114] Z. Qiao, S. Zhao, J. Wang, S. Wang, Z. Wang, M.D. Guiver, A highly permeable aligned montmorillonite mixed-matrix membrane for CO2 separation, Angew. Chem. Int. Ed. 55(2016) 9321-9325.[115] X. Cao, Z. Qiao, Z. Wang, S. Zhao, P. Li, J. Wang, S. Wang, Enhanced performance of mixed matrix membrane by incorporating a highly compatible covalent organic framework into poly(vinylamine) for hydrogen purification, Int. J. Hydrogen Energy 41(2016) 9167-9174.[116] L. Deng, M.-B. Hägg, Carbon nanotube reinforced PVAm/PVA blend FSC nanocomposite membrane for CO2/CH4 separation, Int. J. Greenhouse Gas Control 26(2014) 127-134.[117] Y. Shen, H. Wang, J. Liu, Y. Zhang, Enhanced performance of a novel polyvinyl amine/chitosan/graphene oxide mixed matrix membrane for CO2 capture, ACS Sustain. Chem. Eng. 3(2015) 1819-1829.[118] R. Xing, W.S.W. Ho, Crosslinked polyvinylalcohol-polysiloxane/fumed silica mixed matrix membranes containing amines for CO2/H2 separation, J. Membr. Sci. 367(2011) 91-102.[119] Y. Zhao, B.T. Jung, L. Ansaloni, W.S.W. Ho, Multiwalled carbon nanotube mixed matrix membranes containing amines for high pressure CO2/H2 separation, J. Membr. Sci. 459(2014) 233-243.[120] L. Ansaloni, Y. Zhao, B.T. Jung, K. Ramasubramanian, M.G. Baschetti, W.S.W. Ho, Facilitated transport membranes containing amino-functionalized multi-walled carbon nanotubes for high-pressure CO2 separations, J. Membr. Sci. 490(2015) 18-28.[121] R.D. Noble, Perspectives on mixed matrix membranes, J. Membr. Sci. 378(2011) 393-397. |
[1] | Sihan Huang, Yaohan Chen, Xue Wang, Jing Guo, Yonggang Li, Lei Dai, Shenghai Li, Suobo Zhang. Preparation of antifouling ultrafiltration membranes from copolymers of polysulfone and zwitterionic poly(arylene ether sulfone)s [J]. Chinese Journal of Chemical Engineering, 2022, 49(9): 100-110. |
[2] | Yuanyuan Jin, Siping Ding, Peiyun Li, Xuefen Wang. Coordination of thin-film nanofibrous composite dialysis membrane and reduced graphene oxide aerogel adsorbents for elimination of indoxyl sulfate [J]. Chinese Journal of Chemical Engineering, 2022, 49(9): 111-121. |
[3] | Juanjuan Liu, Xiaolong Lu, Guiming Shu, Ke Li, Shuyun Zheng, Xiao Kong, Tao Li, Jun Yang. The facile method developed for preparing polyvinylidene fluoride plasma separation membrane via macromolecular interaction [J]. Chinese Journal of Chemical Engineering, 2022, 49(9): 140-149. |
[4] | Jun Pan, Xianli Xu, Zhaohui Wang, Shi-Peng Sun, Zhaoliang Cui, Lassaad Gzara, Iqbal Ahmed, Omar Bamaga, Mohammed Albeirutty, Enrico Drioli. Innovative hydrophobic/hydrophilic perfluoropolyether (PFPE)/polyvinylidene fluoride (PVDF) composite membrane for vacuum membrane distillation [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 248-257. |
[5] | Haoqing Xu, Wenyan Feng, Menglong Sheng, Ye Yuan, Bo Wang, Jixiao Wang, Zhi Wang. Covalent organic frameworks-incorporated thin film composite membranes prepared by interfacial polymerization for efficient CO2 separation [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 152-160. |
[6] | Xia Zhan, Xueying Zhao, Zhongyong Gao, Rui Ge, Juan Lu, Luying Wang, Jiding Li. Breakthroughs on tailoring membrane materials for ethanol recovery by pervaporation [J]. Chinese Journal of Chemical Engineering, 2022, 52(12): 19-36. |
[7] | Qiang-Song Wang, Gui-Fang Wang, Hai-Yun Zhang, Fa-Quan Zhao, Yuan-Lu Cui. Development of genipin crosslinked gelatin matrices on surface interaction: Enhancing the biocompatibility by attenuating sterile inflammation [J]. Chinese Journal of Chemical Engineering, 2021, 38(10): 205-215. |
[8] | Shujuan Xiao, Xiaowen Huo, Shuxin Fan, Kui Zhao, Shouwu Yu, Xiaoyao Tan. Design and synthesis of Al-MOF/PPSU mixed matrix membrane with pollution resistance [J]. Chinese Journal of Chemical Engineering, 2021, 29(1): 110-120. |
[9] | Ali Hatami, Iman Salahshoori, Niloufar Rashidi, Danial Nasirian. The effect of ZIF-90 particle in Pebax/Psf composite membrane on the transport properties of CO2, CH4 and N2 gases by Molecular Dynamics Simulation method [J]. Chinese Journal of Chemical Engineering, 2020, 28(9): 2267-2284. |
[10] | Xin Zheng, Shuai Ban, Bei Liu, Guangjin Chen. Strain-controlled graphdiyne membrane for CO2/CH4 separation: Firstprinciple and molecular dynamic simulation [J]. Chinese Journal of Chemical Engineering, 2020, 28(7): 1898-1903. |
[11] | Meidi Wang, Weixiong Guo, Zhongyi Jiang, Fusheng Pan. Reducing active layer thickness of polyamide composite membranes using a covalent organic framework interlayer in interfacial polymerization [J]. Chinese Journal of Chemical Engineering, 2020, 28(4): 1039-1045. |
[12] | Wei Liang, Zhongkuan Luo, Li Zhou. Preparation and characterization of the n-HA/PVA/CS porous composite hydrogel [J]. Chinese Journal of Chemical Engineering, 2020, 28(2): 598-602. |
[13] | Chungang Xu, Xiaosen Li, Kefeng Yan, Xuke Ruan, Zhaoyang Chen, Zhiming Xia. Research progress in hydrate-based technologies and processes in China: A review [J]. Chinese Journal of Chemical Engineering, 2019, 27(9): 1998-2013. |
[14] | Runlin Han, Yongli Xie, Xufeng Ma. Crosslinked P84 copolyimide/MXene mixed matrix membrane with excellent solvent resistance and permselectivity [J]. Chinese Journal of Chemical Engineering, 2019, 27(4): 877-883. |
[15] | Hajar Taheri Afarani, Morteza Sadeghi, Ahmad Moheb, Ebrahim Nasr Esfahani. Optimization of the gas separation performance of polyurethane-zeolite 3A and ZSM-5 mixed matrix membranes using response surface methodology [J]. Chin.J.Chem.Eng., 2019, 27(1): 110-129. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||