[1] T. Li, R.H. Liu, Q. Wang, J.Q. Rao, Y.J. Liu, Z.K. Dai, R. Gooneratne, J. Wang, Q.M. Xie, X.H. Zhang, A review of the influence of environmental pollutants (microplastics, pesticides, antibiotics, air pollutants, viruses, bacteria) on animal viruses, J. Hazard. Mater. 468 (2024) 133831. [2] G.Q. Feng, H.N. Huang, Y.G. Chen, Effects of emerging pollutants on the occurrence and transfer of antibiotic resistance genes: a review, J. Hazard. Mater. 420 (2021) 126602. [3] W.H. Chen, T.X. Kang, F.Q. Du, P.P. Han, M.L. Gao, P. Hu, F. Teng, H.B. Fan, A new S-scheme heterojunction of 1D ZnGa(2)O(4)/ZnO nanofiber for efficient photocatalytic degradation of TC-HCl, Environ. Res. 232 (2023) 116388. [4] Y.T. Xia, X.M. Li, Y. Wu, Z. Chen, Z.J. Pi, A.B. Duan, J.W. Liu, Tetracycline hydrochloride degradation by activation of peroxymonosulfate with lanthanum copper Ruddlesden-Popper perovskite oxide: Performance and mechanism, Chemosphere 332 (2023) 138906. [5] Y. Wu, X.M. Li, H. Zhao, F.B. Yao, J. Cao, Z. Chen, F.Y. Ma, D.B. Wang, Q. Yang, 2D/2D FeNi-layered double hydroxide/bimetal-MOFs nanosheets for enhanced photo-Fenton degradation of antibiotics: Performance and synergetic degradation mechanism, Chemosphere 287 (Pt 1) (2022) 132061. [6] Y. Wu, X.M. Li, H. Zhao, F.B. Yao, J. Cao, Z. Chen, D.B. Wang, Q. Yang, Core-shell structured Cu2O@HKUST-1 heterojunction photocatalyst with robust stability for highly efficient tetracycline hydrochloride degradation under visible light, Chem. Eng. J. 426 (2021) 131255. [7] K.X. Ren, M.S. Lv, Q.J. Xie, C.L. Zhang, H.F. Shi, Dual BN quantum dot/Ag co-catalysts synergistically promote electron-hole separation on g-C3N4 nanosheets for efficient antibiotics oxidation and Cr(VI) reduction, Carbon 186 (2022) 355-366. [8] L. Zhao, W. Zhou, M. Wen, Q.S. Wu, W.Y. Li, Y.Q. Fu, Q.J. Zhu, S. Chen, J.Q. Ran, Trifunctional Cu-mesh/Cu2O@FeO nanoarrays for highly efficient degradation of antibiotic, inactivation of antibiotic-resistant bacteria, and damage of antibiotics resistance genes, ENERGY ENVIRONMENTAL Mater. 6 (1) (2023) e12299. [9] Y.Y. Yu, Q.T. Zhang, L.Y. Hao, H.S. Huo, M.Y. Li, X. Liu, S.F. Wang, D.Y. Min, Heterogeneous Cu(2)O-Au nanocatalyst anchored on wood and its insight for synergistic photodegradation of organic pollutants, Environ. Res. 215 (Pt 2) (2022) 114298. [10] J. Ma, Y.J. Hua, Y.K. Cao, C.M. Jia, J.W. Li, Anchoring Cu2O nanoparticles on g-C3N4 nanosheets for enhanced photocatalytic performance, Fuel 364 (2024) 131139. [11] V. Subhiksha, M.K. Okla, P.R. Sivaranjani, M.A. Abdel-Maksoud, A.A. Alatar, S.S. Al-Amri, I.A. Alaraidh, S.S. Khan, Interstitial decoration of Ag linking 3D Cu(2)O octahedron and 2D CaWO(4) for augmented visible light active photocatalytic degradation of rifampicin and genotoxicity studies, J. Environ. Manage. 354 (2024) 120451. [12] Y. Zhang, J.F. Chen, Y.N. Wang, H.C. Dou, Z.P. Lin, X. Gao, X.Q. Chen, M.H. Guo, Cu2O/Ag-coated wood-based biochar composites for efficient adsorption/photocatalysis synergistic degradation of high-concentration azo dyes, Appl. Surf. Sci. 647 (2024) 158985. [13] Z.H. Yu, F. Li, Q.J. Xiang, Carbon dots-based nanocomposites for heterogeneous photocatalysis, J. Mater. Sci. Technol. 175 (2024) 244-257. [14] M.A. Ahmad Farid, J. Lease, A. Yoshito, Lignocellulosic biomass-derived carbon quantum dots (CQDs): a novel approach utilizing organosolv lignin from Moso bamboo waste, J. Clean. Prod. 467 (2024) 142852. [15] M.A. Silva, S.A. Nebra, M.J. Machado Silva, C.G. Sanchez, The use of biomass residues in the Brazilian soluble coffee industry, Biomass Bioenergy 14 (5-6) (1998) 457-467. [16] Z.H. Xu, Z.F. Lin, Y.F. Zeng, H.M. Yang, Y.L. Wang, M.Y. Niu, Z.J. Xiao, J. Luo, Z.L. Lin, P. Chen, W.Y. Lv, G.G. Liu, Preparation of Fe-doped coffee ground biochar and activation of PMS for chloroquine phosphate removal, Appl. Surf. Sci. 679 (2025) 161160. [17] Y. Liu, S.Y. Wang, J.B. Huo, X.B. Zhang, H.T. Wen, D. Zhang, Y. Zhao, D.J. Kang, W.S. Guo, H.H. Ngo, Adsorption recovery of phosphorus in contaminated water by calcium modified biochar derived from spent coffee grounds, Sci. Total Environ. 909 (2024) 168426. [18] Z.Y. Zhao, W.Q. Wu, W.P. Li, B.Z. Li, Z.Y. Shui, X.X. Wang, G.X. Jiang, G.G. Li, J. Cheng, Z.S. Zhang, Z.P. Hao, Adsorption recovery of chlorinated volatile organic compounds on coffee ground-based activated carbon of tunable porosity, Sep. Purif. Technol. 354 (2025) 129271. [19] J. McNutt, Q.S. He, Spent coffee grounds: a review on current utilization, J. Ind. Eng. Chem. 71 (2019) 78-88. [20] P.C. Hsu, Z.Y. Shih, C.H. Lee, H.T. Chang, Synthesis and analytical applications of photoluminescent carbon nanodots, Green Chem. 14 (4) (2012) 917-920. [21] Y.Y. Xu, X.L. Jiao, D.R. Chen, PEG-assisted preparation of single-crystalline Cu2O hollow nanocubes, J. Phys. Chem. C 112 (43) (2008) 16769-16773. [22] T. Lu, F.W. Chen, Multiwfn: a multifunctional wavefunction analyzer, J. Comput. Chem. 33 (5) (2012) 580-592. [23] P. Sharma, S.K. Sharma, Photocatalytic degradation of cuprous oxide nanostructures under UV/visible irradiation, Water Resour. Manag. 26 (15) (2012) 4525-4538. [24] M.R. Azhar, H.R. Abid, H.Q. Sun, V. Periasamy, M.O. Tade, S.B. Wang, Excellent performance of copper based metal organic framework in adsorptive removal of toxic sulfonamide antibiotics from wastewater, J. Colloid Interface Sci. 478 (2016) 344-352. [25] R. Navik, D. Xiao, Y.Z. Gai, H.J. Tan, Y.P. Zhao, One-pot synthesis of copper nanowire-graphene composite with excellent stability and electrical performance for flexible electrodes, Appl. Surf. Sci. 527 (2020) 146694. [26] K.Y. Eayal Awwad, B.F. Yousif, K. Fallahnezhad, K. Saleh, X.S. Zeng, Influence of graphene nanoplatelets on mechanical properties and adhesive wear performance of epoxy-based composites, Friction 9 (4) (2021) 856-875. [27] X.L. Zhang, L. Han, J.F. Li, T. Lu, J.L. Li, G. Zhu, L.K. Pan, A novel Sn-based coordination polymer with high-efficiency and ultrafast lithium storage, J. Mater. Sci. Technol. 97 (2022) 156-164. [28] M. E. Aguirre, R. Zhou, A. J. Eugene, M. I. Guzman, M. A. Grela, Cu2O/TiO2 heterostructures for CO2 reduction through a direct Z-scheme: Protecting Cu2O from photocorrosion, Appl. Catal. B-Environ. 217 (2017) 485-493. [29] J. He, D.W. Shao, L.C. Zheng, L.J. Zheng, D.Q. Feng, J.P. Xu, X.H. Zhang, W.C. Wang, W.H. Wang, F. Lu, H. Dong, Y.H. Cheng, H. Liu, R.K. Zheng, Construction of Z-scheme Cu2O/Cu/AgBr/Ag photocatalyst with enhanced photocatalytic activity and stability under visible light, Appl. Catal. B Environ. 203 (2017) 917-926. [30] Y. Li, P.F. Wang, C.P. Huang, W.F. Yao, Q. Wu, Q.J. Xu, Synthesis and photocatalytic activity of ultrafine Ag3PO4 nanoparticles on oxygen vacated TiO2, Appl. Catal. B Environ. 205 (2017) 489-497. [31] P. Peng, Z. Chen, X.M. Li, Y. Wu, Y.T. Xia, A.B. Duan, D.B. Wang, Q. Yang, Biomass-derived carbon quantum dots modified Bi2MoO6/Bi2S3 heterojunction for efficient photocatalytic removal of organic pollutants and Cr (Ⅵ), Sep. Purif. Technol. 291 (2022) 120901. [32] T.I.T. Okpalugo, P. Papakonstantinou, H. Murphy, J. McLaughlin, N.M.D. Brown, High resolution XPS characterization of chemical functionalised MWCNTs and SWCNTs, Carbon 43 (1) (2005) 153-161. [33] M. Zhang, Y. Nakayama, Effect of ultraviolet light irradiation on amorphous carbon nitride films, J. Appl. Phys. 82 (10) (1997) 4912-4915. [34] K. Pandi, M. Preeyanghaa, V. Vinesh, J. Madhavan, B. Neppolian, Complete photocatalytic degradation of tetracycline by carbon doped TiO2 supported with stable metal nitrate hydroxide, Environ. Res. 207 (2022) 112188. [35] C. Wang, J.P. Xu, S.B. Shi, Y.Z. Zhang, Z.M. Liu, X.G. Zhang, S.G. Yin, L. Li, Structural, optical and photoelectrical properties of Cu2O films electrodeposited at different pH, RSC Adv. 6 (6) (2016) 4422-4428. [36] Z.L. Tang, W.J. He, Y.L. Wang, Y.C. Wei, X.L. Yu, J. Xiong, X. Wang, X. Zhang, Z. Zhao, J. Liu, Ternary heterojunction in rGO-coated Ag/Cu2O catalysts for boosting selective photocatalytic CO2 reduction into CH4, Appl. Catal. B Environ. 311 (2022) 121371. [37] Y. He, J. Huang, B.S. Wang, Y. Qu, Construction of Z-scheme heterojunction C3N4/N-CQDs@W18O49 for full-spectrum photocatalytic organic pollutant degradation, Appl. Surf. Sci. 610 (2023) 155255. [38] X.Z. Yuan, L.B. Jiang, X.H. Chen, L.J. Leng, H. Wang, Z.B. Wu, T. Xiong, J. Liang, G.M. Zeng, Highly efficient visible-light-induced photoactivity of Z-scheme Ag2CO3/Ag/WO3 photocatalysts for organic pollutant degradation, Environ. Sci.: Nano 4 (11) (2017) 2175-2185. [39] J.Y. Guo, H.B. Sun, X.Z. Yuan, L.B. Jiang, Z.B. Wu, H.B. Yu, N. Tang, M.D. Yu, M. Yan, J. Liang, Photocatalytic degradation of persistent organic pollutants by Co-Cl bond reinforced CoAl-LDH/Bi12O17Cl2 photocatalyst: mechanism and application prospect evaluation, Water Res. 219 (2022) 118558. [40] L.B. Jiang, X.Z. Yuan, G.M. Zeng, J. Liang, X.H. Chen, H.B. Yu, H. Wang, Z.B. Wu, J. Zhang, T. Xiong, In-situ synthesis of direct solid-state dual Z-scheme WO3/g-C3N4/Bi2O3 photocatalyst for the degradation of refractory pollutant, Appl. Catal. B Environ. 227 (2018) 376-385. [41] O. Almora, C. Aranda, E. Mas-Marza, G. Garcia-Belmonte, On Mott-Schottky analysis interpretation of capacitance measurements in organometal perovskite solar cells, Appl. Phys. Lett. 109 (17) (2016) 173903. [42] S.S.M. Bhat, S.A. Pawar, D. Potphode, C.K. Moon, J.M. Suh, C. Kim, S. Choi, D.S. Patil, J.J. Kim, J.C. Shin, H.W. Jang, Substantially enhanced photoelectrochemical performance of TiO2 nanorods/CdS nanocrystals heterojunction photoanode decorated with MoS2 nanosheets, Appl. Catal. B Environ. 259 (2019) 118102. [43] V. Van Pham, N.N.T. Pham, H.V. Le, T.M. Cao, Enhancing photocatalytic visible-light-driven oxidation of NOx over Mott-Schottky Ag/SnO2 nanorod heterojunctions, J. Environ. Chem. Eng. 11 (6) (2023) 111556. [44] Q. Li, X. Li, S. Wageh, A.A. Al-Ghamdi, J.G. Yu, CdS/graphene nanocomposite photocatalysts, Adv. Energy Mater. 5 (14) (2015) 1500010. [45] F. Chen, Q. Yang, X.M. Li, G.M. Zeng, D.B. Wang, C.G. Niu, J.W. Zhao, H.X. An, T. Xie, Y.C. Deng, Hierarchical assembly of graphene-bridged Ag3PO4/Ag/BiVO4 (040) Z-scheme photocatalyst: an efficient, sustainable and heterogeneous catalyst with enhanced visible-light photoactivity towards tetracycline degradation under visible light irradiation, Appl. Catal. B Environ. 200 (2017) 330-342. [46] M.M. Li, D.G. Li, Z.R. Zhou, P.F. Wang, X.Y. Mi, Y.G. Xia, H.T. Wang, S.H. Zhan, Y. Li, L.M. Li, Plasmonic Ag as electron-transfer mediators in Bi2MoO6/Ag-AgCl for efficient photocatalytic inactivation of bacteria, Chem. Eng. J. 382 (2020) 122762. [47] H. Guo, H.Y. Niu, W.J. Wang, Y. Wu, T. Xiong, Y.R. Chen, C.Q. Su, C.G. Niu, Schottky barrier height mediated Ti3C2 MXene based heterostructure for rapid photocatalytic water disinfection: Antibacterial efficiency and reaction mechanism, Sep. Purif. Technol. 312 (2023) 123412. [48] Z.M. Wang, A. Berbille, Y.W. Feng, S.T. Li, L.P. Zhu, W. Tang, Z.L. Wang, Contact-electro-catalysis for the degradation of organic pollutants using pristine dielectric powders, Nat. Commun. 13 (1) (2022) 130. [49] Y.Y. Shao, J.D. Hu, T.Y. Yang, X.G. Yang, J.F. Qu, Q. Xu, C.M. Li, Significantly enhanced photocatalytic in-situ H2O2 production and consumption activities for efficient sterilization by ZnIn2S4/g-C3N4 heterojunction, Carbon 190 (2022) 337-347. [50] H. Guo, Z.T. Dong, Y.Y. Yang, L. Sui, W.J. Wang, C. Liang, T. Xiong, Y.R. Chen, M. Yan, X.J. Wen, C.G. Niu, Polarized electric field-mediated graphitic carbon nitride-based S-scheme heterostructure for efficient photocatalytic removal of bisphenol A, Appl. Surf. Sci. 682 (2025) 161739. [51] Y. Yang, Z.T. Zeng, C. Zhang, D.L. Huang, G.M. Zeng, R. Xiao, C. Lai, C.Y. Zhou, H. Guo, W.J. Xue, M. Cheng, W.J. Wang, J.J. Wang, Construction of iodine vacancy-rich BiOI/Ag@AgI Z-scheme heterojunction photocatalysts for visible-light-driven tetracycline degradation: Transformation pathways and mechanism insight, Chem. Eng. J. 349 (2018) 808-821. [52] H. Guo, C.G. Niu, L. Zhang, X.J. Wen, C. Liang, X.G. Zhang, D.L. Guan, N. Tang, G.M. Zeng, Construction of direct Z-scheme AgI/Bi2Sn2O7 nanojunction system with enhanced photocatalytic activity: accelerated interfacial charge transfer induced efficient Cr(VI) reduction, tetracycline degradation and escherichia coli inactivation, ACS Sustainable Chem. Eng. 6 (6) (2018) 8003-8018. [53] B.S. Wang, R.Y. Li, Z.Y. Zhang, W.W. Zhang, X.L. Yan, X.L. Wu, G.A. Cheng, R.T. Zheng, Novel Au/Cu2O multi-shelled porous heterostructures for enhanced efficiency of photoelectrochemical water splitting, J. Mater. Chem. A 5 (27) (2017) 14415-14421. [54] Y.C. Fu, L. Peng, Q.R. Zeng, Y. Yang, H.J. Song, J.H. Shao, S.Y. Liu, J.D. Gu, High efficient removal of tetracycline from solution by degradation and flocculation with nanoscale zerovalent iron, Chem. Eng. J. 270 (2015) 631-640. |