1 Poulin, R., Lawrence, R.W., “Economic and environmental niches of biohydrometallurgy”, Miner. Eng., 9 (8), 799-810 (1996). 2 van Aswegen, P.C., “Commissioning and operation of bio-oxidation plants for the treatment of refractory gold ores”, Hydrometallurgical Fundamentals Technology and Innovations, Soc. Min. Metall. Explor. AIME, Linttleton, Colorado (1993). 3 Rawlings, D.E., Dew, D., Plessis, C., “Biomineralization of metal-containing ores and concentrates”, Trends Biotechnol., 21, 38-44 (2003). 4 Breed, A.W., Hansford, G.S., “Modeling continuous bioleaching reactor”, Biotechnol. Bioeng., 64, 671-677 (1999). 5 Olson, G.J., Brierley, J.A., Brierley, C.L., “Bioleaching review part B. Progress in bioleaching:Applications of microbial processes by the minerals industries”, Appl. Microbiol. Biotechnol., 63, 249-257 (2003). 6 Viñals, J., Roca, A., Hernandez, M.C., Benavente, O., “Topochemical transformation of enargite into copper oxide by hypochlorite leaching”, Hydrometallurgy, 68, 183-193 (2003). 7 Herreros, O., Quiroz, R., Hernandez, M.C., Vi als, J., “Dissolution kinetic of enargite in Cl2/Clmedia”, Hydrometallurgy, 64 (3), 153-160 (2002). 8 Muñoz, J.A., Blázquez, M.L., González, F., Ballester, A., Acevedo, F., Gentina, J.C., González, P., “Electrochemical study of enargite bioleaching by mesophilic and thermophilic microorganisms”, Hydrometallurgy, 84, 175-186 (2006). 9 Escobar, B., Huenupi, E., Wiertz, J.V., “Chemical and biological leaching of enargite”, Biotechnol. Lett., 19, 719-722 (1997). 10 Escobar, B., Huenupi, E., Godoy, I., Wiertz, J.V., “Arsenic precipitation in the bioleaching of enargite by Sulfolobus BC at 70°C”, Biotechnol. Lett., 22, 205-209 (2000). 11 Langhans, D., Lord, A., Lampshire, D., Burbank, A., Baglin, E., “Biooxidation of an arsenic-bearing refractory gold ore”, Miner. Eng., 8, 147-158 (1995). 12 Breed, A.W., Glatz, A., Hansford, G.S., Harrison, S.T.L., “The effect of As(III) and As(V) on the batch bioleaching of a pyrite-arsenopyrite concentrate”, Miner. Eng., 9, 1235-1252 (1996). 13 Asai, S., Konishi, Y., Yoshida, K., “Kinetic model for batch bacterial dissolution of pyrite particles by Thiobacillus ferrooxidans”, Chem. Eng. Sci., 47 (1), 133-139 (1992). 14 Lin, J., Lee, S., Koo, Y., “Modeling and simulation of lactic acid fermentation with inhibition effects of lactic acid and glucose”, Biotechnology and Bioprocess Engineering, 9, 52-58 (2004). 15 Liu, P.L., Zou, L.S., Luo, H.E., Wang, L.J., Zheng, J.H., “Estimation of kinetic parameters for autocatalytic oxidation of cyclohexane based on a modified adaptive genetic algorithm”, Chin. J. Chem. Eng., 12 (1), 49-54 (2004). 16 Sand, W., Gehrke, T., Jozsa, P.G., Schippers, A., “(Bio)chemistry of bacterial leaching-direct vs. indirect bioleaching”, Hydrometallurgy, 59 (2/3), 159-175 (2001). 17 Boon, M., Hansford, G.S., Heijnen, J.J., “The role of bacterial ferrous-iron oxidation in the bio-oxidation of pyrite, Biohydometallurgical Processing 1”, University of Chile, Santiago (1995). 18 Hansford, G.S., “Recent developments in modeling the kinetics of bioleaching”, Biomining:Theory, Microbes and Industrial Processes, Berlin and Landes Bioscience, Springer (1997). 19 Van Scherpenzeel, D.A., Boon, M., Ras, C., Hansfor, G.S., Heijnen, J.J., “The kinetics of ferrousiron oxidation by Leptospirillum bacteria in continuous cultures”, Biotechnol. Prog., 14, 425-433 (1998). 20 Lin, J., Lee, S., Koo, Y., “Model development for lactic acid fermentation and parameter optimization using genetic algorithm”, J. Microbiol. Biotechnol., 14 (6), 1163-1169 (2004). 21 Porro, S., Ramirez, S., Reche, C., Curutchet, G., Alonso-Romanowski, S., Donati, E., “Bacterial attachment:Its role in bioleaching processes”, Process Biochem., 32, 573-578 (1997). 22 Rawlings, D.E., “Characteristics and adaptability of ironand sulfur-oxidizing microorganisms used for the recovery of metals form minerals and their concentrates”, Microbial Cell Factories, 4, 13 (2005). |