1 Singhal, S.C., Kendall, K., Ormerod, R.M., High Temperature Solid Oxide Fuel Cells:Fundamentals, Design and Applications, Singhal, S.C., Kendall, K., eds., Elsevier Advanced Technology, UK, 1-2, 18, 333-341 (2003). 2 Ferguson, J.R., Fiard, J.M., Herbin, R., “Three-dimensional numerical simulation for various geometries of solid oxide fuel cells”, J. Power Sources, 58, 109-122 (1996). 3 Selimovic, A., “Modelling of solid oxide fuel cells applied to the analysis of integrated systems with gas turbines”, Ph. D. Thesis, Lund Univ., Sweden (2002). 4 Li, P., Chyu, M.K., “Simulation of the chemical/electrochemical reactions and heat/mass transfer for a tubular SOFC in a stack”, J. Power Sources, 124, 487-498 (2003). 5 Nikooyeh, K., Jeje, A.A., Hill, J.M., “3D modeling of anode-supported planar SOFC with internal reforming of methane”, J. Power Sources, 171, 601-609 (2007). 6 Hall, D.J., Colclaser, R.G., “Transient modeling and simulation of a tubular solid oxide fuel cell”, IEEE Trans. Energ. Conv., 14, 749-753 (1999). 7 Xue, X., Tang, J., Sammes, N., Du, Y., “Dynamic modeling of single tubular SOFC combining heat/mass transfer and electrochemical reaction effects”, J. Power Sources, 142, 211-222 (2005). 8 Achenbach, E., “Three-dimensional and time-dependent simulation of a planar solid oxide fuel cell stack”, J. Power Sources, 49, 333-348 (1994). 9 Achenbach, E., “Response of a solid oxide fuel cell to load change”, J. Power Sources, 57, 105-109 (1995). 10 Aguiar, P., Adjiman, C.S., Brandon, N.P., “Anode-supported intermediate temperature direct internal reforming solid oxide fuel cell (I) Model-based steady-state performance”, J. Power Sources, 138, 120-136 (2004). 11 Aguiar, P., Adjiman, C.S., Brandon, N.P., “Anode-supported intermediate-temperature direct internal reforming solid oxide fuel cell (II) Model-based dynamic performance and control”, J. Power Sources, 147, 136-147 (2005). 12 Braun, R.J., “Optimal design and operation of solid oxide fuel cell systems for small-scale stationary applications”, Ph. D. Thesis, Univ. of Wisconsin-Madison, USA (2002). 13 Matsuzake, Y., Yasuda, I., “Electrochemical oxidation of H2 and CO in a H2-H2O-CO-CO2 system at the interface of a Ni-YSZ cermet electrode and YSZ electrolyte”, J. Electrochem. Soc., 147, 1630-1635 (2000). 14 Achenbach, E., Riensche, E., “Methane/steam reforming kinetics for solid oxide fuel cells”, J. Power Sources, 52, 283-288 (1994). 15 Campanari, S., Iora, P., “Definition and sensitivity analysis of a finite volume SOFC model for a tubular cell geometry”, J. Power Sources, 132, 113-126 (2004). 16 Bossel, U.G., Final Report on SOFC Data:Facts and Figures, Swiss Federal Office of Energy, Berne (1992). 17 Kyle, B.G., Chemical and Process Thermodynamics, Prentice Hall, Englewood Cliffs (1984). 18 Chan, S.H., Khor, K.A., Xia, Z.T., “A complete polarization model of a solid oxide fuel cell and its sensitivity to the change of cell component thickness”, J. Power Sources, 93, 130-140 (2001). 19 Costamagna, P., Honegger, K., “Modeling of solid oxide heat exchanger integrated stacks and simulation at high fuel utilization”, J. Electrochem. Soc., 145, 3995-4007 (1998). 20 Larminie, J., Dicks, A., Fuel Cell Systems Explained, John Wiley & Sons, Chichester, 51 (2000). 21 Patankar, S.V., Numerical Heat Transfer and Fluid Flow, Hemisphere, Washington (1980). 22 Yu, L.J., Yuan, J.Q., Cao, G.Y., Jiang, X.M., “Numerical simulation of dynamic performance of the molten carbonate fuel cell”, Chin. J. Chem. Eng., 12, 272-276 (2004). |