›› 2009, Vol. 17 ›› Issue (3): 484-492.
• BIOTECHNOLOGY AND BIOENGINEERING • Previous Articles Next Articles
CUI Youwei1, WANG Shuying1, LI Jing2
Received:
2008-09-04
Revised:
2009-04-09
Online:
2009-06-28
Published:
2009-06-28
Supported by:
崔有为1, 王淑莹1, 李晶2
通讯作者:
WANG Shuying,E-mail:wsy@bjut.edu.cn
基金资助:
CUI Youwei, WANG Shuying, LI Jing. On-line Monitoring for Phosphorus Removal Process and Bacterial Community in Sequencing Batch Reactor[J]. , 2009, 17(3): 484-492.
崔有为, 王淑莹, 李晶. On-line Monitoring for Phosphorus Removal Process and Bacterial Community in Sequencing Batch Reactor[J]. , 2009, 17(3): 484-492.
1 Barnard, J.L., “Biological nutrient removal without the addition of chemicals”, Water Res., 9, 485-490(1975). 2 Kerrn-Jesperson, J.P., Henze, M., “Biological phosphorus uptake under anoxic and aerobic conditions”, Water Res., 27(4), 617-624(1993). 3 Kuba, T., van Loosdrecht, M.C.M., Heijnen, J.J., “Effect of cyclic oxygen exposure on the activity of denitrifying phosphorus removing bacteria”, Water Sci. Technol., 34(1/2), 33-40(1996). 4 Meinhold, J., Filipe, C.D.M., Daigger, G.T., Isaacs, S., “Characterization of the denitrifying fraction of phosphate accumulating organisms in biological phosphate removal”, Water Sci. Technol., 39(1), 31-42(1999). 5 Freitas, F., Temudo, M., Reis, M.A.M., “Microbial population response to changes of the operating conditions in a dynamic nutrient-removal sequencing batch reactor”, Bioprocess Biosystems Eng., 28(3), 199-209(2005). 6 Mino,T., van Loosdrecht, M.C.M., Heijnen, J.J., “Microbiology and biochemistry of the enhanced biological phosphate removal process”, Water Res., 32(1), 3193-3207(1998). 7 Kong, Y.H., Nielsen, J.L., Nielsen, P.H., “Microautoradiographic study of Rhodocyclus-related polyphosphate-accumulating bacteria in full-scale enhanced biological phosphorus removal plants”, Appl. Environ. Microbiol., 70(9), 5383-5390(2004). 8 Oehmen, A., Zeng, R.J, Yuan, Z.G., Keller, J., “Anaerobic metabolism of propionate by polyphosphate-accumulating organisms in enhanced biological phosphorus removal systems”, Biotechnol. Bioeng., 91(1), 43-53(2005). 9 Wilderer, P.A., Irvine, R.L., Goronszy, M.C., Sequencing Batch Reactor Technology, IWA Publishing, London, England(2001). 10 Marsili-Libelli, S., “Control of SBR switching by fuzzy pattern recognition”, Water Res., 40, 1095-1107(2006). 11 Muller, A., Marsili-libelli, S., Aivasidis, A., Lloyd, T., Kroner, S., Wandrey, C., “Fuzzy control of disturbances in a wastewater treatment process”, Water Res., 31(12), 3157-3167(1997). 12 Artan, N., Orhon, D., “Mechanisms and design of sequencing batch reactors for nutrient removal”, In:IWA Scientific and Technical Report No.19, IWA Publishers, London(2005). 13 Plisson-Saune, S., “Real-time control of nitrogen removal using three ORP bending points:Signification, control strategy and results”, Water Sci. Tech., 33(1), 275-280(2005). 14 Harremoes, P., Capodaglio, A.G., Ellstrom, B.G., Henze, M., Jensen, K.N., Lynggaard-Jensen, A., Ottterpohl, R., S eborg, H., “Wastewater treatment plants under transient loading—performance, modelling and control”, Water Sci. Technol., 27(12), 71-115(1993). 15 Buitron, G., Schoeb, M.E., Moreno-Andradea, I., Moreno, J.A., “Evaluation of two control strategies for a sequencing batch reactor degrading high concentration peaks of 4-chlorophenol”, Water Res., 39, 1015-1024(2005). 16 Chen, K.C., Chen, C.Y., Peng, J.W., Houng, J.Y., “Real-time control of an immobilized-cell reactor for wastewater treatment using ORP”, Water Res., 36, 230-238(2002). 17 Cho, B.C., Liaw, S.L., Chang, C.N., Yu, R.F., Yang, S.J., Chiou, B.R., “Development of a real-time control strategy with artificial neural network for automatic control of a continuous-flow sequencing batch reactor”, Water Sci. Technol., 44, 95-104(2001). 18 Furumai, H., Kazmi, A.A., Fujita, M., Furuya, Y., Sasaki, K., “Modelling long term nutrient removal in a sequencing batch reactor”, Water Res., 33, 2708-2714(1999). 19 Hao, O.J., Huang, J., “Alternating aerobic-anoxic process for nitrogen removal, process evaluation”, Water Environ. Res., 68, 83-93(1996). 20 Hu, Z., Ferraina, R.A., Ericson, J.F., MacKay, A.A., Smets, B.F., “Biomass characteristics in three sequencing batch reactors treating a wastewater containing synthetic organic chemicals”, Water Res., 39, 710-720(2005). 21 Kim, J.H., Chen, M., Kishida, N., Sudo, R., “Integrated realtime control strategy for nitrogen removal in swine wastewater treatment using sequencing batch reactors”, Water Res., 38, 3340-3348(2004). 22 Yoo, C.K., Lee, D.S., Vanrolleghem, P.A., “Application of multiway ICA for on-line process monitoring of a sequencing batch reactor”, Water Res., 38, 1715-1732(2004). 23 Sperandio, M., Queinnec, I., “Online estimation of wastewater nitrifiable nitrogen, nitrification dynamics and denitrification rates, using ORP and DO dynamics”, Water Sci. Technol., 49, 31-38(2004). 24 Puig, S., Corominas, L., Vives, M.T., Balaguer, M.D., Colprim, J., “Development and implementation of a real-time control system for nitrogen removal using OUR and ORP as end points”, Indus. Eng. Chem. Res., 44(9), 3367-3373(2005). 25 Ra, C.S., Lo, K.V., Shin, J.S., Oh, J.S., Hong, B.J., “Biological nutrient removal with an internal organic carbon source in piggery wastewater”, Water Res., 34, 965-973(2000). 26 Guo, J., Yang, Q., Peng, Y., Yeng, A., Wang, S., “Biological nutrient removal with real time control using step-feed SBR technology”, Enzyme Microb. Technol., 40(6), 1564-1569(2007). 27 Holman, J.B., Wareham, D.G., “COD, ammonia and dissolved oxygen time profiles in the simultaneous nitrification/denitrification process”, Biochem. Eng. J., 22, 125-133(2005). 28 Lee, D.S., Jeon, C.O., Park, J.M., “Biological nitrogen removal with enhanced phosphate uptake in a sequencing batch reactor using single sludge system”, Water. Res., 35, 3968-3976(2001). 29 Luccarini, L., Porra, E., Spagni, A., Ratini, P., Grilli, S., Longhi, S., Bortone, G., “Soft sensors for control of nitrogen and phosphorus removal from wastewaters by neural networks”, Water Sci. Technol., 45(4/5), 101-107(2002). 30 Spagni, A., Buday, J., Ratini, P., Bortone, G., “Experimental considerations on monitoring ORP, pH, conductivity and dissolved oxygen in nitrogen and phosphorus biological removal processes”, Water Sci. Technol., 43(11), 197-204(2001). 31 Hong, S.H., Lee, M.W., Lee, D.S., Park, J.M., “Monitoring of sequencing batch reactor for nitrogen and phosphorus removal using neural networks”, Biochem. Eng. J., 35, 365-370(2007). 32 Pankaj, T., Tapas, N., Pallavi, U., Pravin, M., “Correlating on-line monitoring parameters, pH, DO and ORP with nutrient removal in an intermittent cyclic process bioreactor system”, Bioresource Technology, 99, 7630-7635(2008). 33 Smolders, G.J.F., van Loosdrecht, M.C.M., Heijnen, J.J., “Model of the anaerobic metabolism of the biological phosphorus removal process;Stoichiometry and pH influence”, Biotech. Bioeng., 43, 461-470(1994). 34 Smolders, G.J.F., van Loosdrecht, M.C.M., Heijnen, J.J., “A metabolic model of the biological phosphorus removal process:Effect of the sludge retention time”, Biotech. Bioeng., 48, 222-233(1995). 35 Jeon, C.O., Park, J.M., “Enhanced biological phosphorous removal in a sequencing batch reactor supplied with glucose as a sole carbon source”, Water Res., 34(7), 2160-2170(2000). 36 Cech, J.S., Hartman, P., “Competition between polyphosphate and polysaccharide accumulating bacterial in enhanced biological phosphate removal system”, Water Res., 27(7), 1219-1225(1993). 37 Liu, W.T., Mino, T., Nakamura, K., Matsuo, T., “Internal energy-based competition between polyphosphateand glycogen-accumulating bacteria in biological phosphorus removal reactors—Effect of P/C feeding ratio”, Water Res., 31(6), 1430-1438(1997). 38 Cech, J.S., Hartman, P., “Glucose induced breakdown of enhanced biological phosphate removal”, Environ. Technol., 11, 651-656(1990). 39 Kargi, F., Uygur, A., Savas, H., Kaya, B., “Phosphate uptake and release rates with different carbon sources in biological nutrient removal using a SBR”, J. Environ. Manage., 76, 71-75(2005). 40 Kishida, N., Kim, J.M., Chen, M., Sasaki, H., Sudo, R., “Effectiveness of oxidation-reduction potential and pH as monitoring and control parameters for nitrogen removal in swine wastewater treatment by sequencing batch reactors”, Biosci. Bioeng., 96(3), 285-290(2003). 41 Oehmen, A., Yuan, Z.G., Blackall, L.L., Keller, J., “Comparison of acetate and propionate uptake by polyphosphate accumulating organisms and glycogen accumulating organisms”, Biotechnol. Bioeng., 91(2), 162-168(2005). 42 Levantesi, C., Serafim, L.S., Crocetti, G.R., Lemos, P.C., Rossetti, S., Blackall, L.L., Reis, M.A.M., Tandoi, V., “Analysis of the microbial community structure and function of a laboratory scale enhanced biological phosphorus removal reactor”, Environ. Microbiol., 4(10), 559-569(2002). 43 Carvalho, G., Lemos, P.C., Oehmen, A., Reis, M.A.M., “Denitrifying phosphorus removal:Linking the process performance with the microbial community structure”, Water Res., 41, 4383-4396(2007). 44 Wentzel, M.C., Lotter, L.H., Loewenthal, R.E., Marias, G.V.R., “Metabolic behavior of Acinetobacter ssp. in enhanced biological phosphorus removal—A biochemical model”, Water SA, 12, 209-224(1986). 45 Zeng, R.J., van Loosdrecht, M.C.M., Yuan, Z.G., Keller, J., “Metabolic model for glycogen-accumulating organisms in anaerobic/aerobic activated sludge systems”, Biotechnol. Bioeng., 81(1), 92-105(2003). 46 Oehmen, A., Yuan, Z., Blackall, L.L., Keller, J., “Comparison of acetate and propionate uptake by polyphosphate accumulating organisms and glycogen accumulating organisms”, Biotechnol. Bioeng., 91(2), 162-168(2005). 47 Crocetti, G.R., Banfield, J.F., Keller, J., Bond, P.L., Blackall, L.L., “Glycogen-accumulating organisms in laboratory-scale and full-scale wastewater treatment processes”, Microbiol. SGM, 148, 3353-3364(2002). 48 Liu, W.T., Mino, T., Matsuo, T., Nakamura, K., “Biological phosphorus removal processes-effect of pH on anaerobic substrate metabolism”, Water Sci. Technol., 34(1/2), 25-32(1996). 49 Kong, Y.H., Ong, S.L., Ng, W.J., Liu, W.T., “Diversity and distribution of a deeply branched novel proteobacterial group found in anaerobic-aerobic activated sludge processes”, Environ. Microbiol., 4(11), 753-757(2002). 50 Saunders, A.M., Oehmen, A., Blackall, L.L., Yuan, Z., Keller, J., “The effect of GAOs(glycogen accumulating organisms) on anaerobic carbon requirements in full-scale Australian EBPR(enhanced biological phosphorus removal) plants”, Water Sci. Technol., 47(11), 37-43(2003). 51 Wong, M.T., Tan, F.M., Ng, W.J., Liu, W.T., “Identification and occurrence of tetrad-forming Alphaproteobacteria in anaerobic-aerobic activated sludge processes”, Microbiology, 150, 3741-3748(2004). 52 Mino, T., Satoh, H., Matsuo, T., “Metabolism of different bacterial populations in enhanced biological phosphate removal processes”, Water Sci. Tech., 29(7), 67-70(1994). |
[1] | Xuejing He, Zhenlin Li, Ji Wang, Hai Yu. Effects of tube cross-sectional shapes on flow pattern, liquid film and heat transfer of n-pentane across tube bundles [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 16-25. |
[2] | Chaojie Li, Xianxin Fang, Meiling Sun, Jihai Duan, Weiwen Wang. Study on two-phase cloud dispersion from liquefied CO2 release [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 37-45. |
[3] | Wensheng Li, Liangyuan Qi, Daolin Ye, Wei Cai, Weiyi Xing. Facile modification of aluminum hypophosphate and its flame retardancy for polystyrene [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 90-98. |
[4] | Xingjuan Liang, Dehua Xu, Zhengjuan Yan, Jingxu Yang, Xinlong Wang, Zhiye Zhang, Jingli Wu, Honggang Zhen. Solid-liquid phase equilibrium for the system ammonium polyphosphate-urea ammonium nitrate-potassium chloride-water at 273.2 K [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 131-142. |
[5] | Eileen Katherine Coronado-Aldana, Cindy Lizeth Ferreira-Salazar, Nubia Yineth Piñeros-Castro, Rubén Vázquez-Medina, Felipe A. Perdomo. Thermodynamic analysis, synthesis, characterization, and evaluation of 1-ethyl-3-methylimidazolium chloride: Study of its effect on pretreated rice husk [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 143-154. |
[6] | Xiaolin Pan, Mengyuan Gao, Yun Wang, Yanping He, Tian Si, Yanlin Sun. Poly(lactic acid)-aspirin microspheres prepared via the traditional and improved solvent evaporation methods and its application performances [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 194-204. |
[7] | Sinu Poolachira, Sivasubramanian Velmurugan. Graphene oxide/hydrotalcite modified polyethersulfone nanohybrid membrane for the treatment of lead ion from battery industrial effluent [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 253-261. |
[8] | Alexander Nti Kani, Evans Dovi, Aaron Albert Aryee, Runping Han, Zhaohui Li, Lingbo Qu. Mechanisms and reusability potentials of zirconium-polyaziridine-engineered tiger nut residue towards anionic pollutants [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 275-292. |
[9] | Anjun Liu, Jie Chen, Meng Guo, Chengmin Chen, Meihong Yang, Chao Yang. The internal circulations on internal mass transfer rate of a single drop in nonlinear uniaxial extensional flow [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 51-60. |
[10] | Huie Liu, Hongjian Chen, Guanghui Huang, Yunfei Yu, Rujie Li, Shuang Chen. Remediation of oily soil using acidic sophorolipids micro-emulsion [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 270-278. |
[11] | Xiaohong Zhou, Wenfeng Zhou, Wei Zhuang, Chenjie Zhu, Hanjie Ying, Hongman Zhang. Enhanced production of cytidine 5'-monophosphate using biocatalysis of di-enzymes immobilized on amino-functionalized sepharose [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 40-52. |
[12] | Masoumeh Sheikh Hosseini Lori, Mohammad Delnavaz, Hoda Khoshvaght. Synthesizing and characterizing the magnetic EDTA/chitosan/CeZnO nanocomposite for simultaneous treating of chromium and phenol in an aqueous solution [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 76-88. |
[13] | Chaobo Zhang, Xiaoyong Yang, Jian Dai, Wenxia Liu, Hang Yang, Zhishan Bai. Efficient extraction of phenol from wastewater by ionic micro-emulsion method: Anionic and cationic [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 137-145. |
[14] | Zijie Zhang, Qianyu Zha, Ying Liu, Zhibing Zhang, Jia Liu, Zheng Zhou. Study on the epoxidation of olefins with H2O2 catalyzed by biquaternary ammonium phosphotungstic acid [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 146-154. |
[15] | Weikai Ren, Runsong Dai, Ningde Jin. Modeling of liquid film thickness around Taylor bubbles rising in vertical stagnant and co-current slug flowing liquids [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 179-194. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||