›› 2011, Vol. 19 ›› Issue (4): 615-620.
• CATALYSIS, KINETICS AND REACTORS • Previous Articles Next Articles
YANG Hongjun, FAN Shuanshi, LANG Xuemei, WANG Yanhong, NIE Jianghua
Received:
2010-11-23
Revised:
2011-05-26
Online:
2011-08-28
Published:
2011-08-28
Supported by:
杨宏军, 樊栓狮, 郎雪梅, 王燕鸿, 聂江华
通讯作者:
WANG Yanhong,E-mail:wyh@scut.edu.cn
基金资助:
YANG Hongjun, FAN Shuanshi, LANG Xuemei, WANG Yanhong, NIE Jianghua. Economic Comparison of Three Gas Separation Technologies for CO2 Capture from Power Plant Flue Gas [J]. , 2011, 19(4): 615-620.
杨宏军, 樊栓狮, 郎雪梅, 王燕鸿, 聂江华. Economic Comparison of Three Gas Separation Technologies for CO2 Capture from Power Plant Flue Gas [J]. , 2011, 19(4): 615-620.
1 Yamasaki, A., “An overview of CO2 mitigation options for global warming-Emphasizing CO2 sequestration options”, J. Chem. Eng. Japan, 36 (4), 361-375 (2003). 2 Zhang, A.L., Fang, D., Greenhouse Gas CO2 Control and Recovery, China environmental science press, Beijing (1996). (in Chinese) 3 U.S. EIA, “International energy outlook 2010”, Washington, DC, 2010 [2010-10-13], http://www.eia.doe.gov/oiaf/ieo. 4 National Energy Technology Laboratory (NETL), “Pulverized coal oxy-combustion power plants”, 2008[2011-02-05], http://www.netl. doe.gov/energy-analyses/pubs/PC%20Oxyfuel%20Combustion%20 Revised%20Report%202008.pdf. 5 Yang, H.Q., Xu, Z.H., Fan, M.H., Gupta, R., Slimane, R.B., Bland, A.E., Wright, L., “Progress in carbon dioxide separation and capture:A review”, J. Environ. Sci., 20 (1), 14-27 (2008). 6 Ho, M.T., Allinson, G.W., Wiley, D.E., “Factors affecting the cost of capture for Australian lignite coal fired power plants”, Energy Procedia, 1 (1), 763-770 (2009). 7 Herzog, H., Meldon, J., Hatton, A., “Advanced post-combustion CO2 capture”, 2009 [2011-02-05], http://web.mit.edu/mitei/docs/ reports/ herzog-meldon-hatton.pdf. 8 Klemes, J., Bulatov, I., Cockerill, T., “Techno-economic modeling and cost functions of CO2 capture processes”, Comput. Aided Chem. Eng., 20, 295-300 (2005). 9 Hoffmann, S., Bratlett, M., Finkenrath, M., Evulet, A., Ursin, T.P., “Performance and cost analysis of advanced gas turbine cycles with precombustion CO2 capture”, J. Eng. for Gas Turbines and Power, 131 (2), 021701, 1-7. 10 Metz, B., Davidson, O., Coninck, H. D., Loos, M., Meyer, L., “Carbon dioxide capture and storage”, Cambridge University Press, 2005 [2010-10-13], http://www.climatescience.gov/workshop2005/presentations/breakout_2ARubin.pdf. 11 Li, J.L., Chen, B.H., “Review of CO2 absorption using chemical solvents in hollow fiber membrane contactors”, Sep. Purif. Technol, 41 (2), 109-122 (2005). 12 Gibson, J., Schallehn, D., Zheng, Q., Chen, J., “Carbon dioxide capture from coal-fired power plants in China”, Summary Report for NZEC Work Package 3,2009 [2010-10-13], http://www.nzec.info/en/ assets/Reports/Techno-Economic-Comparison-WP3-Final-English.pdf. 13 Oexmann, J., Kather, A., “Post-combustion CO2 capture in coal-fired power plants:Comparison of integrated chemical absorption processes with piperazine promoted potassium carbonate and MEA”, Energy Procedia, 1 (1), 799-806 (2009). 14 Hamilton, M.R., Herzog, H.J., Parsons, J.E., “Cost and U.S. public policy for new coal power plants with carbon capture and sequestration”, Energy Procedia, 1 (1), 4487-4494 (2009). 15 Yan, S.P., Fang, M.X., Zhang, W.F., Zhong, W.L., Luo, Z.Y., Cen, K.F., “Comparative analysis of CO2 separation from flue gas by membrane gas absorption technology and chemical absorption technology in China”, Energy Convers. Manage., 49 (11), 3188-3197 (2008). 16 Zhong, W.L., “Study on CO2 chemical absorption technology”, Master Thesis, Zhejiang University, China (2008). (in Chinese). 17 Romeo, L.M., Bolea, I., Escosa, J.M., “Integration of power plant and amine scrubbing to reduce CO2 capture costs”, Appl. Therm. Eng., 28 (8-9), 1039-1046 (2008). 18 Fang, M.X., Zhang, W.F., Yan, S.P., Luo, Z.Y., Cen, K.F., “Economic analysis on separation of CO2 from coal-fired power plant”, J. Zhejiang University (Eng. Sci.), 41 (12), 2077-2081 (2007). (in Chinese) 19 Yan, S.P., Fang, M.X., Zhang, W.F., Luo, Z.Y., Cen, K.F., “Engineering design and economic analysis of CO2 sequestration from flue gas by using membrane absorption techniques”, J. Power Eng., 27 (3), 415-421 (2007). (in Chinese). 20 Abu-Zahra, M.R.M., Niederer, J.P.M., Feron, P.H.M., Feron, P.H.M., Versteeg, G.F., “CO2 capture from power plants Part II. A parametric study of the economical performance based on mono-ethanolamine”, Int. J. Greenhouse Gas Control, 1 (2), 135-142 (2007). 21 Peeters, A.N.M., Faaij, A.P.C., Turkenburg, W.C., “Techno-economic analysis of natural gas combined cycles with post-combustion CO2 absorption, including a detailed evaluation of the development potential”, Greenhouse Gas Control, 1 (4), 396-417 (2007). 22 Ho, M.T., Allinson, G.W., Wiley, D.E., “Comparison of CO2 separation options for geo-sequestration:Are membranes competitive?”, Desalination, 192 (1-3), 288-295 (2006). 23 Ho, M.T., Leamon, G., Alinson, G.W., Wiley, D.E., “Economics of CO2 and mixed gas geosequestration of flue gas using gas separation membranes”, Ind. Eng. Chem. Res., 45 (8), 2546-2552 (2006). 24 Ho, M.T., Wiley, D.E., Allinson, G.W., “Reducing the cost of post-combustion CO2 capture”, In:Proceedings of the Eighth International Conference on Greenhouse Gas Technologies (GHGT-8), Tronheim, Norway (2006). 25 Rubin, E.S., Rao, A.B., Chen, C., “Comparative assessments of fossil fuel power plants with CO2 capture and storage”, 2005 [2010-02-05], http://uregina.ca/ghgt7/PDF/papers/peer/475.pdf. 26 Ciferno, J.P., DiPietro, P., Tarka, T., “An economic scoping study for CO2 capture using aqueous ammonia”, 2005 [2010-10-13], http://www. transactionsmagazine.com/ArgonneLabCommonSense.pdf. 27 Simmondsl, M., Hurst, P., “Post combustion technologies for CO2 capture:A techno-economic overview of selected options”, 2005 [2010-10-13], http://uregina.ca/ghgt7/PDF/papers/nonpeer/471.pdf . 28 Jaud, P., Gros-Bonnivard, R., Kanniche, M., “Technico-economic feasibility study of CO2 capture, transport and geo-sequestration:a case study for France”, 2005[2010-10-13], http://uregina.ca/ghgt7/ PDF/papers/peer/033.pdf. 29 Morrison, G.F., “Summary of Canadian clean power coalition work on CO2 capture and storage”, 2004 [2010-10-13] http://www.iea-coal.org.uk/publishor/system/component_view.asp?P hyDocId=5602&LogDocId=81216. 30 Rao, A.B., Rubin, E.S., Berkenpas, M.B., “An integrated modeling framework for carbon management technologies”, 2004 [2010-10-13], http://www.iecm-online.com/documentation/tech_04.pdf. 31 Singh, D., Croiset, E., Douglas, P.L., Douglas, M.A., “techno-economic study of CO2 capture from an existing coal-fired power plant:MEA scrubbing vs. O2/CO2 recycle combustion”, Energy Convers. Manage., 44 (19), 3073-309 (2003). 32 Chen, C., Rao, A.B., Rubin, E.S., “Comparative assessment of CO2 capture options for Existing coal-fired power plants”, The Second National Conference on Carbon Sequestration, Alexandria, VA, USA (2003). 33 Rao, A. B., Rubine, S. A., “Technical, Economic, and environmental assessment of amine-based CO2 capture technology for power plant greenhouse gas control”, Environ. Sci. Technol., 36 (20), 4467-4475 (2002). 34 Parsons Infrastructure & Technology Group, Inc. “Updated cost and performance estimates for fossil fuel power plants with CO2 removal”, 2002 [2010-10-13], http://www.netl.doe.gov/technologies/carbon_seq/Resources/Analysis/pubs/UpdatedCosts.pdf. 35 Simbeck, D.R., “CO2 mitigation economics for existing coal-fired power plants”, Pittsburgh Coal Conference, Newcastle, NSW, Australia, 2001 [2010-10-13], http://www.netl.doe.gov/publications/proceedings/01/carbon_seq/7c2.pdf. 36 Alstom Power Inc., ABB Lummus Global Inc., “Engineering feasibility and economics of CO2 capture on an existing coal-fired power plant”, US Department of Energy/NETL, Pittsburgh, PA, 2001 [2010-10-13], http://www.netl.doe.gov/technologies/carbon_seq/Resources/Analysis/pubs/AlstomReport.pdf. 37 Yang, D.X., Wang, Z., Wang, J.X, Wang, S.C., “Potential of two-stage membrane system with recycle stream for CO2 capture from post-combustion gas”, Energy Fuels, 23, 4755-4762 (2009). 38 Zhao, L., Menzer, R., Riensche, E., Blum, L., Stolten, D., “Concepts and investment cost analyses of muti-stage membrane systems used in post-combustion processes”, Energy Procedia, 1 (1), 269-278 (2009). 39 He, X.Z., Lie, J.A., Sheridan, E., Hagg, M.B., “CO2 Capture by Hollow Fibre Carbon Membranes:Experiments and Process Simulations”, Energy Procedia, 1 (1), 261-268 (2009). 40 Merkel, T.C., Lin, H.Q., Wei, X.T., Baker, R., “Power plant post-combustion carbon dioxide capture:an opportunity for membranes”, J. Membr. Sci., 359 (1-2), 126-139 (2010). 41 Shim, H.M., Lee, J.S., Wang, H.Y., Choi, S.H., Kim, J.H., Kim, H.T., “Modeling and economic analysis of CO2 separation process with hollow fiber membrane module”, Korean J. Chem. Eng., 24 (3), 537-541 (2007). 42 Ho, M.T., Allinson, G.W., Wiley, D.E., “Reducing the cost of CO2 capture from flue gases using membrane technology”, Ind. Eng. Chem. Res., 47 (5), 1562-1568 (2008). 43 Ho, M.T., Allinson, G.W., Wiley, D.E., “Reducing the cost of CO2 capture from flue gases using pressure swing adsorption”, Ind. Eng. Chem. Res., 47 (14), 4883-4890 (2008). 44 Zhang, J., Webley, P.A., Xiao, P., “Effect of process parameters on power requirements of vacuum swing adsorption technology for CO2 capture from flue gas”, Energy Convers. Manage., 49 (2), 346-356 (2008). 45 European Commission, “CO2 capture and storage projects”, 2007 [2010-10-13], http://ec.europa.eu/research/energy/pdf/synopses_co2_en.pdf. 46 Woods, M.C., Capicotto, P.J., Haslbeck, J.L., Kuehn, N.J., Matuszewski, M.., Pinkerton, L.L., Rutkowski, M.D. Schoff, R.L., Vaysman, V., “Cost and Performance Baseline For Fossil Energy Plants”, National Energy Technology Laboratory, 2007 [2011-2-22], http://www.netl.doe.gov/energy-analyses/pubs/Bituminous%20Basel ine_Final%20Report.pdf. |
[1] | Jian Wang, Yuanhui Shen, Donghui Zhang, Zhongli Tang, Wenbin Li. Integrated vacuum pressure swing adsorption and Rectisol process for CO2 capture from underground coal gasification syngas [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 265-279. |
[2] | Wen Tian, Junyi Ji, Hongjiao Li, Changjun Liu, Lei Song, Kui Ma, Siyang Tang, Shan Zhong, Hairong Yue, Bin Liang. Measurements of the effective mass transfer areas for the gas–liquid rotating packed bed [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 13-19. |
[3] | Shan Liu, Wenqi Zhong, Xi Chen, Li Sun, Lukuan Yang. Multiobjective economic model predictive control using utopia-tracking for the wet flue gas desulphurization system [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 343-352. |
[4] | An Wang, Zhongyu Hou. Improving the energy efficiency of surface dielectric barrier discharge devices for plasma nitric oxide conversion utilizing active flow control [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 270-279. |
[5] | Heping Xie, Yunpeng Wang, Tao Liu, Yifan Wu, Wenchuan Jiang, Cheng Lan, Zhiyu Zhao, Liangyu Zhu, Dongsheng Yang. Electrochemical CO2 mineralization for red mud treatment driven by hydrogen-cycled membrane electrolysis [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 14-23. |
[6] | Jian Chen, Lingbing Bu, Yingqi Luo. Comparative study on pressure swing adsorption system for industrial hydrogen and fuel cell hydrogen [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 112-119. |
[7] | Xinran Zhang, Hua Shang, Jiangfeng Yang, Libo Li, Jinping Li. Nitrogen rejection from low quality natural gas by pressure swing adsorption experiments and simulation using dynamic adsorption isotherms [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 120-129. |
[8] | Tao Tian, Yayan Wang, Bing Liu, Zhaoyang Ding, Xinxi Xu, Meisheng Shi, Jun Ma, Yanjun Zhang, Donghui Zhang. Simulation and experiment of six-bed PSA process for air separation with rotating distribution valve [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 329-337. |
[9] | Dongqi An, Yuyao Yang, Weixin Zou, Yandi Cai, Qing Tong, Jingfang Sun, Lin Dong. Insight into the promotional mechanism of Cu modification towards wide-temperature NH3-SCR performance of NbCe catalyst [J]. Chinese Journal of Chemical Engineering, 2022, 50(10): 301-309. |
[10] | Jiangyuan Qu, Nana Qi, Kai Zhang, Lifeng Li, Pengcheng Wang. Wet flue gas desulfurization performance of 330 MW coal-fired power unit based on computational fluid dynamics region identification of flow pattern and transfer process [J]. Chinese Journal of Chemical Engineering, 2021, 29(1): 13-26. |
[11] | Tong Tao, Shitao Wang, Yixin Qu, Dapeng Cao. Displacement of shale gas confined in illite shale by flue gas: A molecular simulation study [J]. Chinese Journal of Chemical Engineering, 2021, 29(1): 295-303. |
[12] | Baowei Wang, Shumei Yao, Yeping Peng. Simultaneous desulfurization and denitrification of flue gas by pre-ozonation combined with ammonia absorption [J]. Chinese Journal of Chemical Engineering, 2020, 28(9): 2457-2466. |
[13] | Jing Gao, Qiang Li, Fuli Liu. Calcium sulfate whisker prepared by flue gas desulfurization gypsum: A physical-chemical coupling production process [J]. Chinese Journal of Chemical Engineering, 2020, 28(8): 2221-2226. |
[14] | Lan Li, Xiaoting Huang, Quanda Jiang, Luyue Xia, Jiawei Wang, Ning Ai. New process development and process evaluation for capturing CO2 in flue gas from power plants using ionic liquid [emim][Tf2N] [J]. Chinese Journal of Chemical Engineering, 2020, 28(3): 721-732. |
[15] | Lukuan Yang, Wenqi Zhong, Li Sun, Xi Chen, Yingjuan Shao. Dynamic optimization oriented modeling and nonlinear model predictive control of the wet limestone FGD system [J]. Chinese Journal of Chemical Engineering, 2020, 28(3): 832-845. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 5165
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 3563
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||