1 Bosch, H., Janssen, F., “Formation and control of nitrogen oxides”, Catal. Today, 2 (4), 369-379 (1988). 2 Armor, J.N., “Environmental catalysis”, Appl. Catal., B, 1 (4), 221-256 (1992). 3 Lin, S.L., Lee, W.J., Lee, C.F., Chen, S.J., “Energy savings and emission reduction of nitrogen oxides, particulate matter, and polycyclic aromatic hydrocarbons by adding water-containing acetone and neat soybean oil to a diesel-fueled engine generator”, Energy Fuels, 24 (8), 4522-4533 (2010). 4 Casanova, M., Schermanz, K., Llorca, J., Trovarelli, A., “Improved high temperature stability of NH3-SCR catalysts based on rare earth vanadates supported on TiO2/WO3/SiO2”, Catalysis Today, 184 (1), 227-236 (2012). 5 Xie, S., Wang, J., He, H., “Poisoning effect of sulphate on the selective catalytic reduction of NOx by C3H6 over Ag-Pd/Al2O3”, J. Mol. Catal. A Chem., 266, 166-172 (2007). 6 Svachula, J., Ferlazzo, N., Forzatti, P., Tronconi, E., Bregani, F., “Selective reduction of nitrogen oxides (NOx) by ammonia over honeycomb selective catalytic reduction catalysts”, Ind. Eng. Chem. Res., 32 (6), 1053-1060 (1993). 7 Kamata, H., Takahashi, K., Ingemar, Odenbrand, C.U., “Kinetics of the selective reduction of NO with NH3 over a V2O5 (WO3)/TiO2 commercial SCR catalyst”, J. Catal., 185, 106-113 (1999). 8 Chen, J.P., Yang, R.T., “Role of WO3 in mixed V2O5-WO3/TiO2 catalysts for selective catalytic reduction of nitric oxide with ammonia”, Appl. Catal., A, 80, 135-148 (1992). 9 Alemany, L.J., Lietti, L.J., Ferlazzo, N., Forzatti, P., Busca, G., Giamello, E., Bregani, F., “Reactivity and physicochemical characterization of V2O5-WO3/TiO2 De- NOx catalysts”, J. Catal., 155, 117-130 (1995). 10 Casagrande, L., Lietti, L., Nova, I., Forzatti, P., Baiker, A., “SCR of NO by NH3 over TiO2-supported V2O5-MoO3 catalysts: Reactivity and redox behavior”, Appl. Catal., B, 22, 63-77 (1999). 11 Choi, S.H., Cho, S.P., Lee, J.Y., “The influence of non-stoichiometric species of V/TiO2 catalysts on selective catalytic reduction at low temperature”, J. Mol. Catal. A Chem., 304, 166-173 (2009). 12 Krocher, O., Elsener, M., “Chemical deactivation of V2O5/WO3-TiO2 SCR catalysts by additives and impurities from fuels, lubrication oils, and urea solution (I) Catalytic studies”, Appl. Catal., B, 77, 215-227 (2008). 13 Tronconi, E., Nova, I., Ciardelli, C., Chatterjee, D., Weibel, M., “Redox features in the catalytic mechanism of the “standard” and “fast” NH3-SCR of NOx over a V-based catalyst investigated by dynamic methods”, J. Catal. 245, 1-10 (2007). 14 Zamaro, J.M., Ulla, M.A., Miro, E.E., “The effect of different slurry compositions and solvents upon the properties of ZSM5-washcoated cordierite honeycombs for the SCR of NOx with methane”, Catal. Today, 107, 86-93 (2005). 15 Liu, Q., Liu, Z., Huang, Z., Xie, G., “A honeycomb catalyst for simultaneous NO and SO2 removal from flue gas: Preparation and evaluation”, Catal. Today, 93, 833-837 (2004). 16 Sun, H., Shu, Y., Quan, X., Chen, S., Pang, B., Liu, Z., “Experimental and modeling study of selective catalytic reduction of NOx with NH3 over wire mesh honeycomb catalysts”, Chem. Eng. J., 165, 769-775 (2010). 17 Zheng, Y., Jensen, A.D., Johnsson, J.E., “Deactivation of V2O5-WO3-TiO2 SCR catalyst at a biomass-fired combined heat and power plant”, Appl. Catal., B, 60, 253-264 (2005). 18 Zheng, Y., Jensen, A.D., Johnsson, J.E., Thogersen, J.R., “Deactivation of V2O5-WO3-TiO2 SCR catalyst at biomass fired power plants: Elucidation of mechanisms by lab- and pilot-scale experiments”, Appl. Catal., B, 83, 186-194 (2008). 19 Madia, G., Elsener, M., Koebel, M., Raimondi, F., Wokaun, A., “Thermal stability of vanadia-tungsta-titania catalysts in the SCR process”, Appl. Catal., B, 39, 181-190 (2002). 20 Kolta, G. A., Askar, M. H., “Thermal decomposition of some metal sulphates”, Thennochimica Atia., 11, 65-72 (1975). 21 Pelovski, Y., Petkova, V., Nikolov, S., “Study of the mechanism of the thermochemical decomposition of ferrous sulphate monohydrate”, Thermochimica Acta., 274, 273-280 (1996). 22 Chae, H.J., Nam, I.S., Ham, S.W., Hong, S.B., “Characteristics of vanadia on the surface of V2O5/Ti-PILC catalyst for the reduction of NOx by NH3”, Appl. Catal., B, 53 (2), 117-126 (2004). 23 Jung, S.M., Grange, P., “Characterization and reactivity of V2O5-WO3 supported on TiO2- ?catalyst for the SCR reaction”, Appl. Catal., B, 32, 123-131 (2001). 24 Gao, Y., Luan, T., Lü, T., Xu, H., “The Mo loading effect on SCR deNOx performance for V-W-Mo/TiO2 catalyst”, Applied Mechanics and Materials, 229, 126-129 (2012). 25 Gao, Y., Luan, T., Lü, T., Xu, H., “The Mo loading effect on thermo stability and SO2 oxidation of SCR catalyst”, Advanced Materials Research, 573, 58-62 (2012). 26 Liu, Q., Liu, Z., Xie, G., Huang, Z., “Effect of SO2 on a cordierite honeycomb supported CuO catalyst for NO reduction by NH3”, Catal. Lett., 101, 27-30 (2005). 27 Nakajima, F., Hamada, I., “The state-of-the-art technology of NOx control”, Catal. Today, 29, 109-115 (1996). 28 Beeckman, J.W., Hegedus, L.L., “Design of monolith catalysts for power plant NOx emission control”, Ind. Eng. Chem. Res., 30 (5), 969-978 (1991). |