›› 2017, Vol. 25 ›› Issue (7): 882-891.DOI: 10.1016/j.cjche.2016.11.007
• Separation Science and Engineering • Previous Articles Next Articles
Longwei Xu, Long Xiang, Chongqing Wang, Jian Yu, Lixiong Zhang, Yichang Pan
Received:
2016-10-12
Revised:
2016-11-22
Online:
2017-08-17
Published:
2017-07-28
Supported by:
Longwei Xu, Long Xiang, Chongqing Wang, Jian Yu, Lixiong Zhang, Yichang Pan
通讯作者:
Chongqing Wang,E-mail address:cqw@njtech.edu.cn;Yichang Pan,E-mail address:panyc@njtech.edu.cn
基金资助:
Longwei Xu, Long Xiang, Chongqing Wang, Jian Yu, Lixiong Zhang, Yichang Pan. Enhanced permeation performance of polyether-polyamide block copolymer membranes through incorporating ZIF-8 nanocrystals[J]. , 2017, 25(7): 882-891.
Longwei Xu, Long Xiang, Chongqing Wang, Jian Yu, Lixiong Zhang, Yichang Pan. Enhanced permeation performance of polyether-polyamide block copolymer membranes through incorporating ZIF-8 nanocrystals[J]. , 2017, 25(7): 882-891.
[1] R.W. Baker, K. Lokhandwala, Natural gas processing with membranes:An overview, Ind. Eng. Chem. Res. 47(2008) 2109-2121. [2] P. Bernardo, E. Drioli, G. Golemme, Membrane gas separation:A review/state of the art, Ind. Eng. Chem. Res. 48(2009) 4638-4663. [3] R.W. Baker, Future directions of membrane gas separation technology, Ind. Eng. Chem. Res. 41(2002) 1393-1411. [4] A.D. Ebner, J.A. Ritter, State-of-the-art adsorption and membrane separation processes for carbon dioxide production from carbon dioxide emitting industries, Sep. Sci. Technol. 44(2009) 1273-1421. [5] T.C. Merkel, H.Q. Lin, X.T. Wei, R. Baker, Power plant post-combustion carbon dioxide capture:An opportunity for membranes, J. Membr. Sci. 359(2010) 126-139. [6] V.I. Bondar, B.D. Freeman, I. Pinnau, Gas transport properties of poly(ether-b-amide) segmented block copolymers, J. Polym. Sci. Polym. Phys. 38(2000) 2051-2062. [7] J.H. Kim, Y.M. Lee, Gas permeation properties of poly(amide-6-b-ethylene oxide)-silica hybrid membranes, J. Membr. Sci. 193(2001) 209-225. [8] S.L. Liu, L. Shao, M.L. Chua, C.H. Lau, H. Wang, S. Quan, Recent progress in the design of advanced PEO-containing membranes for CO2 removal, Prog. Polym. Sci. 38(2013) 1089-1120. [9] Y.Y. Wang, H.Y. Li, G.X. Dong, C. Scholes, V. Chen, Effect of fabrication and operation conditions on CO2 separation performance of PEO-PA block copolymer membranes, Ind. Eng. Chem. Res. 54(2015) 7273-7283. [10] L. Xiang, Y.C. Pan, G.F. Zeng, J.L. Jiang, J. Chen, C.Q. Wang, Preparation of poly(etherblock-amide)/attapulgite mixed matrix membranes for CO2/N2 separation, J. Membr. Sci. 500(2016) 66-75. [11] T. Li, Y.C. Pan, K.V. Peinemann, Z.P. Lai, Carbon dioxide selective mixed matrix composite membrane containing ZIF-7 nano-fillers, J. Membr. Sci. 425(2013) 235-242. [12] T.S. Chung, L.Y. Jiang, Y. Li, S. Kulprathipanja, Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation, Prog. Polym. Sci. 32(2007) 483-507. [13] C.M. Zimmerman, A. Singh, W.J. Koros, Tailoring mixed matrix composite membranes for gas separations, J. Membr. Sci. 137(1997) 145-154. [14] S. Kanehashi, G.Q. Chen, C.A. Scholes, B. Ozcelik, C. Hua, L. Ciddor, P.D. Southon, D.M. D'Alessandro, S.E. Kentish, Enhancing gas permeability in mixed matrix membranes through tuning the nanoparticle properties, J. Membr. Sci. 482(2015) 49-55. [15] E.V. Perez, K.J. Balkus, J.P. Ferraris, I.H. Musselman, Mixed-matrix membranes containing MOF-5 for gas separations, J. Membr. Sci. 328(2009) 165-173. [16] T.H. Bae, J.S. Lee, W.L. Qiu, W.J. Koros, C.W. Jones, S. Nair, A high-performance gasseparation membrane containing submicrometer-sized metal-organic framework crystals, Angew. Chem. Int. Ed. 49(2010) 9863-9866. [17] S. Basu, A. Cano-Odena, I.F.J. Vankelecom, Asymmetric Matrimid®/[Cu3(BTC)2] mixed-matrix membranes for gas separations, J. Membr. Sci. 362(2010) 478-487. [18] H.B.T. Jeazet, C. Staudt, C. Janiak, Metal-organic frameworks in mixed-matrix membranes for gas separation, Dalton Ttrans. 41(2012) 14003-14027. [19] T. Rodenas, I. Luz, G. Prieto, B. Seoane, H. Miro, A. Corma, F. Kapteijn, F.X.L.I. Xamena, J. Gascon, Metal-organic framework nanosheets in polymer composite materials for gas separation, Nat. Mater. 14(2015) 48-55. [20] T. Rodenas, M. van Dalen, E. Garcia-Perez, P. Serra-Crespo, B. Zornoza, F. Kapteijn, J. Gascon, Visualizing MOF mixed matrix membranes at the nanoscale:Towards structure-performance relationships in CO2/CH4 separation over NH2-MIL-53(Al)@PI, Adv. Funct. Mater. 24(2014) 249-256. [21] K.S. Park, Z. Ni, A.P. Cote, J.Y. Choi, R.D. Huang, F.J. Uribe-Romo, H.K. Chae, M. O'Keeffe, O.M. Yaghi, Exceptional chemical and thermal stability of zeolitic imidazolate frameworks, Proc. Natl. Acad. Sci. U. S. A. 103(2006) 10186-10191. [22] C. Zhang, R.P. Lively, K. Zhang, J.R. Johnson, O. Karvan, W.J. Koros, Unexpected molecular sieving properties of zeolitic imidazolate framework-8, J. Phys. Chem. Lett. 3(2012) 2130-2134. [23] G. Lu, J.T. Hupp, Metal-organic frameworks as sensors:A ZIF-8 based Fabry-Perot device as a selective sensor for chemical vapors and gases, J. Am. Chem. Soc. 132(2010) 7832-7833. [24] Y.C. Pan, Z.O. Lai, Sharp separation of C2/C3 hydrocarbon mixtures by zeolitic imidazolate framework-8(ZIF-8) membranes synthesized in aqueous solutions, Chem. Commun. 47(2011) 10275-10277. [25] Y.C. Pan, T. Li, G. Lestari, Z.P. Lai, Effective separation of propylene/propane binary mixtures by ZIF-8 membranes, J. Membr. Sci. 390(2012) 93-98. [26] A.J. Brown, N.A. Brunelli, K. Eum, F. Rashidi, J.R. Johnson, W.J. Koros, C.W. Jones, S. Nair, Interfacial microfluidic processing of metal-organic framework hollow fiber membranes, Science 345(2014) 72-75. [27] J.F. Yao, H.T. Wang, Zeolitic imidazolate framework composite membranes and thin films:synthesis and applications, Chem. Soc. Rev. 43(2014) 4470-4493. [28] M.J.C. Ordonez, K.J. Balkus, J.P. Ferraris, I.H. Musselman, Molecular sieving realized with ZIF-8/Matrimid® mixed-matrix membranes, J. Membr. Sci. 361(2010) 28-37. [29] K. Díaz, M. López-González, L.F. del Castillo, E. Riande, Effect of zeolitic imidazolate frameworks on the gas transport performance of ZIF8-poly(1,4-phenylene etherether-sulfone) hybrid membranes, J. Membr. Sci. 383(2011) 206-213. [30] J.A. Thompson, K.W. Chapman, W.J. Koros, C.W. Jones, S. Nair, Sonication-induced Ostwald ripening of ZIF-8 nanoparticles and formation of ZIF-8/polymer composite membranes, Microporous Mesoporous Mater. 158(2012) 292-299. [31] Q. Song, S.K. Nataraj, M.V. Roussenova, J.C. Tan, D.J. Hughes, W. Li, P. Bourgoin, M.A. Alam, A.K. Cheetham, S.A. Al-Muhtaseb, E. Sivaniah, Zeolitic imidazolate framework (ZIF-8) based polymer nanocomposite membranes for gas separation, Energy Environ. Sci. 5(2012) 8359. [32] A.F. Bushell, M.P. Attfield, C.R. Mason, P.M. Budd, Y. Yampolskii, L. Starannikova, A. Rebrov, F. Bazzarelli, P. Bernardo, J. Carolus Jansen, M. Lanč, K. Friess, V. Shantarovich, V. Gustov, V. Isaeva, Gas permeation parameters of mixed matrix membranes based on the polymer of intrinsic microporosity PIM-1 and the zeolitic imidazolate framework ZIF-8, J. Membr. Sci. 427(2013) 48-62. [33] N.A.H.M. Nordin, A.F. Ismail, A. Mustafa, R.S. Murali, T. Matsuura, The impact of ZIF-8 particle size and heat treatment on CO2/CH4 separation using asymmetric mixed matrix membrane, RSC Adv. 4(2014) 52530-52541. [34] A. Bhaskar, R. Banerjee, U. Kharul, ZIF-8@PBI-BuI composite membranes:Elegant effects of PBI structural variations on gas permeation performance, J. Mater. Chem. A 2(2014) 12962. [35] N.A.H.M. Nordin, S.M. Racha, T. Matsuura, N. Misdan, N.A. Abdullah Sani, A.F. Ismail, A. Mustafa, Facile modification of ZIF-8 mixed matrix membrane for CO2/CH4 separation:Synthesis and preparation, RSC Adv. 5(2015) 43110-43120. [36] V. Nafisi, M.B. Hagg, Development of dual layer of ZIF-8/PEBAX-2533 mixed matrix membrane for CO2 capture, J. Membr. Sci. 459(2014) 244-255. [37] Y. Pan, Y. Liu, G. Zeng, L. Zhao, Z. Lai, Rapid synthesis of zeolitic imidazolate framework-8(ZIF-8) nanocrystals in an aqueous system, Chem. Commun. 47(2011) 2071-2073. [38] Y.C. Pan, D. Heryadi, F. Zhou, L. Zhao, G. Lestari, H.B. Su, Z.P. Lai, Tuning the crystal morphology and size of zeolitic imidazolate framework-8 in aqueous solution by surfactants, CrystEngComm 13(2011). [39] J. Cravillon, S. Munzer, S.J. Lohmeier, A. Feldhoff, K. Huber, M. Wiebcke, Rapid roomtemperature synthesis and characterization of nanocrystals of a prototypical zeolitic imidazolate framework, Chem. Mater. 21(2009) 1410-1412. [40] T.X. Yang, Y.C. Xiao, T.S. Chung, Poly-/metal-benzimidazole nano-composite membranes for hydrogen purification, Energy Environ. Sci. 4(2011) 4171-4180. [41] N.C. Su, D.T. Sun, C.M. Beavers, D.K. Britt, W.L. Queen, J.J. Urban, Enhanced permeation arising from dual transport pathways in hybrid polymer-MOF membranes, Energy Environ. Sci. 9(2016) 922-931. [42] C. Zhang, Y. Dai, J.R. Johnson, O. Karvan, W.J. Koros, High performance ZIF-8/6FDADAM mixed matrix membrane for propylene/propane separations, J. Membr. Sci. 389(2012) 34-42. [43] A. Jomekian, R.M. Behbahani, T. Mohammadi, A. Kargari, Utilization of Pebax 1657 as structure directing agent in fabrication of ultra-porous ZIF-8, J. Solid State Chem. 235(2016) 212-216. [44] T.C. Merkel, V.I. Bondar, K. Nagal, B.D. Freeman, I. Pinnau, Gas sorption, diffusion, and permeation in poly(dimethylsiloxane), J. Polym. Sci. Polym. Phys. 38(3) (2000) 415-434. [45] R.H.B. Bouma, A. Checchetti, G. Chidichimo, E. Drioli, Permeation through a heterogeneous membrane:The effect of the dispersed phase, J. Membr. Sci. 128(1997) 141-149. [46] A. Car, C. Stropnik, W. Yave, K.-V. Peinemann, Pebax®/polyethylene glycol blend thin film composite membranes for CO2 separation:Performance with mixed gases, Sep. Purif. Technol. 62(2008) 110-117. [47] A.E. Amooghin, M. Omidkhah, A. Kargari, Enhanced CO2 transport properties of membranes by embedding nano-porous zeolite particles into Matrimid®5218 matrix, RSC Adv. 5(2015) 8552-8565. [48] S. Shahid, K. Nijmeijer, Performance and plasticization behavior of polymer-MOF membranes for gas separation at elevated pressures, J. Membr. Sci. 470(2014) 166-177. [49] L.M. Robeson, The upper bound revisited, J. Membr. Sci. 320(2008) 390-400. [50] L.M. Robeson, Correlation of separation factor versus permeability for polymeric membranes, J. Membr. Sci. 62(1991) 165-185. |
[1] | Chaojie Li, Xianxin Fang, Meiling Sun, Jihai Duan, Weiwen Wang. Study on two-phase cloud dispersion from liquefied CO2 release [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 37-45. |
[2] | Pan Wang, Mengdei Zhou, Zhuangxin Wei, Lu Liu, Tao Cheng, Xiaohua Tian, Jianming Pan. Preparation of bowl-shaped polydopamine surface imprinted polymer composite adsorbent for specific separation of 2′-deoxyadenosine [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 69-79. |
[3] | Jiahao Lu, Zhimeng Wang, Qi Zhang, Cheng Sun, Yanyan Zhou, Sijia Wang, Xiangyun Qiu, Shoudong Xu, Rentian Chen, Tao Wei. The effects of amino groups and open metal sites of MOFs on polymer-based electrolytes for all-solid-state lithium metal batteries [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 80-89. |
[4] | Xinxin Li, Hongwei Shao, Shichao Zhang, Yong Li, Jingjing Gu, Qiang Huang, Jin Ran. Two dimensional MoS2 finding its way towards constructing high-performance alkaline recovery membranes [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 155-164. |
[5] | Wenwen Zhang, Zhigang Xue, Liyun Cui, Haoliang Gao, Di Zhao, Rongfei Zhou, Weihong Xing. Synthesis of an IMF zeolite membrane for the separation of xylene isomer [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 205-211. |
[6] | Hammad Saulat, Jianhua Yang, Tao Yan, Waseem Raza, Wensen Song, Gaohong He. Tungsten incorporated mobil-type eleven zeolite membranes: Facile synthesis and tuneable wettability for highly efficient separation of oil/water mixtures [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 242-252. |
[7] | Sinu Poolachira, Sivasubramanian Velmurugan. Graphene oxide/hydrotalcite modified polyethersulfone nanohybrid membrane for the treatment of lead ion from battery industrial effluent [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 253-261. |
[8] | Yuan Liu, Hanting Xiong, Jingwen Chen, Shixia Chen, Zhenyu Zhou, Zheling Zeng, Shuguang Deng, Jun Wang. One-step ethylene separation from ternary C2 hydrocarbon mixture with a robust zirconium metal-organic framework [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 9-15. |
[9] | Yong Xu, Qingbai Chen, Yang Gao, Jianyou Wang, Huiqing Fan, Fei Zhao. Performance comparison of lithium fractionation from magnesium via continuous selective nanofiltration/electrodialysis [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 42-50. |
[10] | Xun Tao, Fan Zhou, Xinlei Yu, Songling Guo, Yunfei Gao, Lu Ding, Guangsuo Yu, Zhenghua Dai, Fuchen Wang. Effect of carbon dioxide on oxy-fuel combustion of hydrogen sulfide: An experimental and kinetic modeling [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 105-117. |
[11] | Borui Liu, Tao Zhang, Yi Zheng, Kailong Li, Hui Pan, Hao Ling. A dynamic control structure of liquid-only transfer stream distillation column [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 135-145. |
[12] | Meihua Zhu, Xingguo An, Tian Gui, Ting Wu, Yuqin Li, Xiangshu Chen. Effects of ion-exchange on the pervaporation performance and microstructure of NaY zeolite membrane [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 176-181. |
[13] | Yafei Su, Xuke Zhang, Hui Li, Donglai Peng, Yatao Zhang. In-situ incorporation of halloysite nanotubes with 2D zeolitic imidazolate framework-L based membrane for dye/salt separation [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 103-111. |
[14] | Shuangtai Liu, Lei He, Qiuxiang Yao, Xi Li, Linyang Wang, Jing Wang, Ming Sun, Xiaoxun Ma. Separation and analysis of six fractions in low temperature coal tar by column chromatography [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 256-265. |
[15] | Wende Tian, Jiawei Zhang, Zhe Cui, Haoran Zhang, Bin Liu. Microscopic mechanism study and process optimization of dimethyl carbonate production coupled biomass chemical looping gasification system [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 291-305. |
Viewed | ||||||
Full text 343
|
|
|||||
Abstract |
|
|||||