Chin.J.Chem.Eng. ›› 2018, Vol. 26 ›› Issue (10): 2055-2063.DOI: 10.1016/j.cjche.2017.08.008
• Catalysis, Kinetics and Reaction Engineering • Previous Articles Next Articles
Yulin Wang, Huan Liu, Zhen Ma
Received:
2017-06-22
Revised:
2017-08-06
Online:
2018-11-14
Published:
2018-10-28
Contact:
Zhen Ma,E-mail address:zhenma@fudan.edu.cn
Supported by:
Supported by the National Natural Science Foundation of China (21177028 and 21477022).
Yulin Wang, Huan Liu, Zhen Ma
通讯作者:
Zhen Ma,E-mail address:zhenma@fudan.edu.cn
基金资助:
Supported by the National Natural Science Foundation of China (21177028 and 21477022).
Yulin Wang, Huan Liu, Zhen Ma. Cerium phosphate-supported Au catalysts for CO oxidation[J]. Chin.J.Chem.Eng., 2018, 26(10): 2055-2063.
Yulin Wang, Huan Liu, Zhen Ma. Cerium phosphate-supported Au catalysts for CO oxidation[J]. Chinese Journal of Chemical Engineering, 2018, 26(10): 2055-2063.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2017.08.008
[1] M. Haruta, T. Kobayashi, H. Sano, N. Yamada, Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0℃, Chem. Lett. 6(1987) 405-408.[2] M. Haruta, M. Date, Advances in the catalysis of Au nanoparticles, Appl. Catal. A Gen. 222(2001) 427-437.[3] A.S.K. Hashmi, G.J. Hutchings, Gold catalysis, Angew. Chem. Int. Ed. 45(2006) 7896-7936.[4] A. Corma, H. Garcia, Supported gold nanoparticles as catalysts for organic reactions, Chem. Soc. Rev. 37(2008) 2096-2126.[5] Y. Zhang, X. Cui, F. Shi, Y. Deng, Nano-gold catalysis in fine chemical synthesis, Chem. Rev. 112(2012) 2467-2505.[6] M. Stratakis, H. Garcia, Catalysis by supported gold nanoparticles:beyond aerobic oxidative processes, Chem. Rev. 112(2012) 4469-4506.[7] M.M. Schubert, S. Hackenberg, A.C. van Veen, M. Muhler, V. Plzak, R.J. Behm, CO oxidation over supported gold catalysts-"inert" and "active" support materials and their role for the oxygen supply during reaction, J. Catal. 197(2001) 113-122.[8] S.H. Overbury, L. Ortiz-Soto, H.G. Zhu, B. Lee, M.D. Amiridis, S. Dai, Comparison of Au catalysts supported on mesoporous titania and silica:investigation of Au particle size effects and metal-support interactions, Catal. Lett. 95(2004) 99-106.[9] Z. Ma, S. Dai, Development of novel supported gold catalysts:a materials perspective, Nano Res. 4(2011) 3-32.[10] L.C. Wang, Y.M. Liu, M. Chen, Y. Cao, H.Y. He, K.N. Fan, MnO2 nanorod supported gold nanoparticles with enhanced activity for solvent-free aerobic alcohol oxidation, J. Phys. Chem. C 112(2008) 6981-6987.[11] R. Si, M. Flytzani-Stephanopoulos, Shape and crystal-plane effects of nanoscale ceria on the activity of Au-CeO2 catalysts for the water-gas shift reaction, Angew. Chem. Int. Ed. 47(2008) 2884-2887.[12] X.-S. Huang, H. Sun, L.-C. Wang, Y.-M. Liu, K.-N. Fan, Y. Cao, Morphology effects of nanoscale ceria on the activity of Au/CeO2 catalysts for low-temperature CO oxidation, Appl. Catal. B Environ. 90(2009) 224-232.[13] G.Q. Yi, H.W. Yang, B.D. Li, H.Q. Lin, K. Tanaka, Y.Z. Yuan, Preferential CO oxidation in a H2-rich gas by Au/CeO2 catalysts nanoscale CeO2 shape effect and mechanism aspect, Catal. Today 157(2010) 83-88.[14] W.F. Yan, S. Brown, Z.W. Pan, S.M. Mahurin, S.H. Overbury, S. Dai, Ultrastable gold nanocatalyst supported by nanosized non-oxide substrate, Angew. Chem. Int. Ed. 45(2006) 3614-3618.[15] Z. Ma, H.F. Yin, S.H. Overbury, S. Dai, Metal phosphates as a new class of supports for gold nanocatalysts, Catal. Lett. 126(2008) 20-30.[16] Z. Ma, H.F. Yin, S. Dai, Influence of preparation methods on the performance of metal phosphate-supported gold catalysts in CO oxidation, Catal. Lett. 138(2010) 40-45.[17] M. Li, Z. Wu, S.H. Overbury, CO oxidation on phosphate-supported Au catalysts:effect of support reducibility on surface reactions, J. Catal. 278(2011) 133-142.[18] H. Liu, Y. Lin, Z. Ma, Au/LaPO4 nanowires:synthesis, characterization, and catalytic CO oxidation, J. Taiwan Inst. Chem. Eng. 62(2016) 275-282.[19] X.S. Qian, H.M. Qin, T. Meng, Y. Lin, Z. Ma, Metal phosphate-supported Pt catalysts for CO oxidation, Materials 7(2014) 8105-8130.[20] B. Pan, S.J. Luo, W.Y. Su, X.X. Wang, Photocatalytic CO2 reduction with H2O over LaPO4 nanorods deposited with Pt cocatalyst, Appl. Catal. B Environ. 168(2015) 458-464.[21] H. Tamai, T. Ikeya, F. Nishiyama, H. Yasuda, K. Iida, S. Nojima, NO decomposition by ultrafine noble metals dispersed on the rare earth phosphate hollow particles, J. Mater. Sci. 35(2000) 4945-4953.[22] Y. Lin, T. Meng, Z. Ma, Catalytic decomposition of N2O over RhOx supported on metal phosphates, J. Ind. Eng. Chem. 28(2015) 138-146.[23] M. Machida, T. Eidome, S. Minami, H.P. Buwono, S. Hinokuma, Y. Nagao, Y. Nakahara, Tuning the electron density of Rh supported on metal phosphates for three-way catalysis, J. Phys. Chem. C 119(2015) 11653-11661.[24] H. Liu, Z. Ma, Effect of different LaPO4 supports on the catalytic performance of Rh2O3/LaPO4 in N2O decomposition and CO oxidation, J. Taiwan Inst. Chem. Eng. 71(2017) 373-380.[25] H. Sun, F.Z. Su, J. Ni, Y. Cao, H.Y. He, K.N. Fan, Gold supported on hydroxyapatite as a versatile multifunctional catalyst for the direct tandem synthesis of imines and oximes, Angew. Chem. Int. Ed. 48(2009) 4390-4393.[26] M.I. Dominguez, F. Romero-Sarria, M.A. Centeno, J.A. Odriozola, Gold/hydroxyapatite catalysts synthesis, characterization and catalytic activity to CO oxidation, Appl. Catal. B Environ. 87(2009) 245-251.[27] J. Huang, L.-C. Wang, Y.-M. Liu, Y. Cao, H.-Y. He, K.-N. Fan, Gold nanoparticles supported on hydroxylapatite as high performance catalysts for low temperature CO oxidation, Appl. Catal. B Environ. 101(2011) 560-569.[28] Y.M. Liu, H. Tsunoyama, T. Akita, S.H. Xie, T. Tsukuda, Aerobic oxidation of cyclohexane catalyzed by size-controlled au clusters on hydroxyapatite:size effect in the sub-2 nm regime, ACS Catal. 1(2011) 2-6.[29] C.Y. Huang, Z. Ma, P.F. Xie, Y.H. Yue, W.M. Hua, Z. Gao, Hydroxyapatite-supported rhodium catalysts for N2O decomposition, J. Mol. Catal. A Chem. 400(2015) 90-94.[30] C.Y. Huang, Y.X. Jiang, Z. Ma, P.F. Xie, Y. Lin, T. Meng, C.X. Miao, Y.H. Yue, W.M. Hua, Z. Gao, Correlation among preparation methods/conditions, physicochemical properties, and catalytic performance of Rh/hydroxyapatite catalysts in N2O decomposition, J. Mol. Catal. A Chem. 420(2016) 73-81.[31] A. Venugopal, M.S. Scurrell, Hydroxyapatite as a novel support for gold and ruthenium catalysts:behaviour in the water gas shift reaction, Appl. Catal. A Gen. 245(2003) 137-147.[32] C. Mondelli, D. Ferri, A. Baiker, Ruthenium at work in Ru-hydroxyapatite during the aerobic oxidation of benzyl alcohol:an in situ ATR-IR spectroscopy study, J. Catal. 258(2008) 170-176.[33] Y.W. Cui, H. Liu, Y. Lin, Z. Ma, Metal phosphate-supported RuOx catalysts for N2O decomposition, J. Taiwan Inst. Chem. Eng. 67(2016) 254-262.[34] H. Onoda, H. Nariai, A. Moriwaki, H. Maki, I. Motooka, Formation and catalytic characterization of various rare earth phosphates, J. Mater. Chem. 12(2002) 1754-1760.[35] Y. Takita, X. Qing, A. Takami, H. Nishiguchi, K. Nagaoka, Oxidative dehydrogenation of isobutane to isobutene Ⅲ:reaction mechanism over CePO4 catalyst, Appl. Catal. A Gen. 296(2005) 63-69.[36] X.L. Weng, R.J. Mei, M.P. Shi, Q.Y. Kong, Y. Liu, Z.B. Wu, CePO4 catalyst for elemental mercury removal in simulated coal-fired flue gas, Energy Fuel 29(2015) 3359-3365.[37] W.Y. Yao, Y. Liu, X.Q. Wang, X.L. Weng, H.Q. Wang, Z.B. Wu, The superior performance of sol-gel made Ce-O-P catalyst for selective catalytic reduction of NO with NH3, J. Phys. Chem. C 120(2016) 221-229.[38] F. Romero-Sarria, M.I. Dominguez, M.A. Centeno, J.A. Odriozola, CO oxidation at low temperature on Au/CePO4:mechanistic aspects, Appl. Catal. B Environ. 107(2011) 268-273.[39] J. Kang, S. Byun, S. Nam, S. Kang, T. Moon, B. Park, Synergistic improvement of oxygen reduction reaction on gold/cerium-phosphate catalysts, Int. J. Hydrog. Energy 39(2014) 10921-10926.[40] J. Park, Y. Oh, Y. Park, S. Nam, J. Moon, J. Kang, D.-R. Jung, S. Byun, B. Park, Methanol oxidation in nanostructured platinum/cerium-phosphate thin films, Curr. Appl. Phys. 11(2011) S2-S5.[41] Y.J. Zhang, J.H. Wang, T. Zhang, Novel Ca-doped CePO4 supported ruthenium catalyst with superiorcatalyticperformancefor aerobic oxidation ofalcohols, Chem. Commun. 47(2011) 5307-5309.[42] H. Liu, Z. Ma, Rh2O3/monoclinic CePO4 composite catalysts for N2O decomposition and CO oxidation, Chin. J. Chem. Eng. (2017) https://doi.org/10.1016/j.cjche.2017.02.007(in press).[43] H. Liu, Z. Ma, Rh2O3/hexagonal CePO4 nanocatalysts for N2O decomposition, Front. Chem. Sci. Eng. (2017) https://doi.org/10.1017/s11705-017-1659-6(in press).[44] S. Lucas, E. Champion, D. Bregiroux, D. Bernache-Assollant, F. Audubert, Rare earth phosphate powders RePO4·nH2O (Re=La, Ce or Y)-part I. Synthesis and characterization, J. Solid State Chem. 177(2004) 1302-1311.[45] Y.P. Fang, A.W. Xu, R.Q. Song, H.X. Zhang, L.P. You, J.C. Yu, H.Q. Liu, Systematic synthesis and characterization of single-crystal lanthanide orthophosphate nanowires, J. Am. Chem. Soc. 125(2003) 16025-16034.[46] M.H. Cao, C.W. Hu, Q.Y. Wu, C.X. Guo, Y.J. Qi, E.B. Wang, Controlled synthesis of LaPO4 and CePO4 nanorods/nanowires, Nanotechnology 16(2005) 282-286.[47] Q.J. Zheng, X. Wang, J.T. Tian, R. Kang, Y.S. Yin, Synthesis and characterization of LaPO4 powder heat treated at various temperatures, Mater. Chem. Phys. 122(2010) 49-52.[48] D. Palma-Ramirez, M.A. Dominguez-Crespo, A.M. Torres-Huerta, H. DorantesRosales, E. Ramirez-Meneses, E. Rodriguez, Microwave-assisted hydrothermal synthesis of CePO4 nanostructures:correlation between the structural and optical properties, J. Alloys Compd. 643(2015) S209-S218.[49] M. Haruta, When gold is not noble:catalysis by nanoparticles, Chem. Rec. 3(2003) 75-87.[50] R. Zanella, L. Delannoy, C. Louis, Mechanism of deposition of gold precursors onto TiO2 during the preparation by cation adsorption and deposition-precipitation with NaOH and urea, Appl. Catal. A Gen. 291(2005) 62-72.[51] M. Khoudiakov, M.C. Gupta, S. Deevi, Au/Fe2O3 nanocatalysts for CO oxidation:a comparative study of deposition-precipitation and coprecipitation techniques, Appl. Catal. A Gen. 291(2005) 151-161.[52] S. Royer, D. Duprez, Catalytic oxidation of carbon monoxide over transition metal oxides, ChemCatChem 3(2011) 24-65.[53] F.Y. Lu, Y.Q. Shen, X. Sun, Z.L. Dong, R.C. Ewing, J. Lian, Size dependence of radiationinduced amorphization and recrystallization of synthetic nanostructured CePO4 monazite, Acta Mater. 61(2013) 2984-2992.[54] Y.J. Zhang, H.M. Guan, Hydrothermal synthesis and characterization of hexagonal and monoclinic CePO4 single-crystal nanowires, J. Cryst. Growth 256(2003) 156-161.[55] W.F. Yan, S.M. Mahurin, Z.W. Pan, S.H. Overbury, S. Dai, Ultrastable Au nanocatalyst supported on surface-modified TiO2 nanocrystals, J. Am. Chem. Soc. 127(2005) 10480-10481.[56] Z. Ma, S.H. Overbury, S. Dai, Au/MxOy/TiO2 catalysts for CO oxidation:promotional effect of main-group, transition, and rare-earth metal oxide additives, J. Mol. Catal. A Chem. 273(2007) 186-197.[57] E.A. Willneff, S. Braun, D. Rosenthal, H. Bluhm, M. Havecker, E. Kleimenov, A. KnopGericke, R. Schlogl, S.L.M. Schroeder, Dynamic electronic structure of a Au/TiO2 catalyst under reaction conditions, J. Am. Chem. Soc. 128(2006) 12052-12053.[58] H.Y. Xu, W. Chu, J.J. Luo, M. Liu, New Au/FeOx/SiO2 catalysts using depositionprecipitation for low-temperature carbon monoxide oxidation, Catal. Commun. 11(2010) 812-815.[59] J.M.C. Soares, P. Morrall, A. Crossley, P. Harris, M. Bowker, Catalytic and noncatalytic CO oxidation on Au/TiO2 catalysts, J. Catal. 219(2003) 17-24.[60] M.C. Kung, R.J. Davis, H.H. Kung, Understanding Au-catalyzed low-temperature CO oxidation, J. Phys. Chem. C 111(2007) 11767-11775. |
[1] | Shuo Li, Jianlin Cao, Xiang Feng, Yupeng Du, De Chen, Chaohe Yang, Wenhua Wang, Wanzhong Ren. Insights into the confinement effect on isobutane alkylation with C4 olefin catalyzed by zeolite catalyst: A combined theoretical and experimental study [J]. Chinese Journal of Chemical Engineering, 2022, 47(7): 174-184. |
[2] | Zhouxin Chang, Feng Yu, Zhisong Liu, Zijun Wang, Jiangbing Li, Bin Dai, Jinli Zhang. Ni-Al mixed metal oxide with rich oxygen vacancies: CO methanation performance and density functional theory study [J]. Chinese Journal of Chemical Engineering, 2022, 46(6): 73-83. |
[3] | Weizhou Jiao, Xingyue Wei, Shengjuan Shao, Youzhi Liu. Catalytic decomposition and mass transfer of aqueous ozone promoted by Fe-Mn-Cu/γ-Al2O3 in a rotating packed bed [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 133-142. |
[4] | Peiwei Han, Chunhua Xu, Yamin Wang, Chenglin Sun, Huangzhao Wei, Haibo Jin, Ying Zhao, Lei Ma. The high catalytic activity and strong stability of 3%Fe/AC catalysts for catalytic wet peroxide oxidation of m-cresol: The role of surface functional groups and FeOx particles [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 105-114. |
[5] | Yufei Yang, Jieyi Ma, Junyan Wu, Weixia Zhu, Yadong Zhang. Experimental and theoretical study on N-hydroxyphthalimide and its derivatives catalyzed aerobic oxidation of cyclohexylbenzene [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 124-130. |
[6] | Feng Guo, Zhihao Chen, Xiliu Huang, Longwen Cao, Xiaofang Cheng, Weilong Shi, Lizhuang Chen. Ternary Ni2P/Bi2MoO6/g-C3N4 composite with Z-scheme electron transfer path for enhanced removal broad-spectrum antibiotics by the synergistic effect of adsorption and photocatalysis [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 157-168. |
[7] | Qi Liu, Gao Cheng, Ming Sun, Weixiong Yu, Xiaohong, Zeng, Shichang Tang, Yongfeng li, Lin Yu. A facile preparation of hausmannite as a high-performance catalyst for toluene combustion [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 392-401. |
[8] | Ling Xu, Ji Li, Wenbin Zeng, Kai Liu, Yibing Ma, Liping Fang, Chenlu Shi. Surfactant-assisted removal of 2,4-dichlorophenol from soil by zero-valent Fe/Cu activated persulfate [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 447-455. |
[9] | Zhen Lu, Jie He, Bogeng Guo, Yulai Zhao, Jingyu Cai, Longqiang Xiao, Linxi Hou. Efficient homogenous catalysis of CO2 to generate cyclic carbonates by heterogenous and recyclable polypyrazoles [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 110-115. |
[10] | Di Gao, Yibo Zhi, Liyuan Cao, Liang Zhao, Jinsen Gao, Chunming Xu, Mingzhi Ma, Pengfei Hao. Influence of zinc state on the catalyst properties of Zn/HZSM-5 zeolite in 1-hexene aromatization and cyclohexane dehydrogenation [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 124-134. |
[11] | Xin Li, Song Hong, Leiduan Hao, Zhenyu Sun. Cadmium-based metal-organic frameworks for high-performance electrochemical CO2 reduction to CO over wide potential range [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 143-151. |
[12] | Yanliang Zhou, Qianjin Sai, Zhenni Tan, Congying Wang, Xiuyun Wang, Bingyu Lin, Jun Ni, Jianxin Lin, Lilong Jiang. Highly efficient subnanometer Ru-based catalyst for ammonia synthesis via an associative mechanism [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 177-184. |
[13] | Xuanyi Jia, Xiaomin Hu, Qiao Wang, Baiquan Chen, Xingyue Xie, Lihong Huang. Auto-thermal reforming of acetic acid for hydrogen production by ZnxNiyCrOm±δ catalysts: Effect of Cr promoted Ni-Zn intermetallic compound [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 216-221. |
[14] | Yichao Wu, Zhiwei Xie, Xiaofeng Gao, Xian Zhou, Yangzhi Xu, Shurui Fan, Siyu Yao, Xiaonian Li, Lili Lin. The highly selective catalytic hydrogenation of CO2 to CO over transition metal nitrides [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 248-254. |
[15] | Feng Guo, Haoran Sun, Yuxing Shi, Fengyu Zhou, Weilong Shi. CdS nanoparticles decorated hexagonal Fe2O3 nanosheets with a Z-scheme photogenerated electron transfer path for improved visible-light photocatalytic hydrogen production [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 266-274. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||