Chin.J.Chem.Eng. ›› 2018, Vol. 26 ›› Issue (3): 574-582.DOI: 10.1016/j.cjche.2017.08.005
• Energy, Resources and Environmental Technology • Previous Articles Next Articles
Kiros Hagos1,2, Chang Liu1, Xiaohua Lu1
Received:
2017-06-05
Revised:
2017-08-07
Online:
2018-04-18
Published:
2018-03-28
Contact:
Chang Liu, Xiaohua Lu
Supported by:
Supported by the State Key Development Program for Basic Research of China (2013CB733501), the National Natural Science Foundation of China (21476106), the Natural Science Foundation of Jiangsu Province (BK20130062), and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) (PPZY2015A044).
Kiros Hagos1,2, Chang Liu1, Xiaohua Lu1
通讯作者:
Chang Liu, Xiaohua Lu
基金资助:
Supported by the State Key Development Program for Basic Research of China (2013CB733501), the National Natural Science Foundation of China (21476106), the Natural Science Foundation of Jiangsu Province (BK20130062), and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) (PPZY2015A044).
Kiros Hagos, Chang Liu, Xiaohua Lu. Effect of endogenous hydrogen utilization on improved methane production in an integrated microbial electrolysis cell and anaerobic digestion: Employing catalyzed stainless steel mesh cathode[J]. Chin.J.Chem.Eng., 2018, 26(3): 574-582.
Kiros Hagos, Chang Liu, Xiaohua Lu. Effect of endogenous hydrogen utilization on improved methane production in an integrated microbial electrolysis cell and anaerobic digestion: Employing catalyzed stainless steel mesh cathode[J]. Chinese Journal of Chemical Engineering, 2018, 26(3): 574-582.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2017.08.005
[1] Y. Cao, A. Pawlowski, Sewage sludge-to-energy approaches based on anaerobic digestion and pyrolysis:brief overview and energy efficiency assessment, Renew. Sust. Energ. Rev. 16(2012) 1657-1665.[2] B. Demirel, P. Scherer, The roles of acetotrophic and hydrogenotrophic methanogens during anaerobic conversion of biomass to methane:a review, Rev. Environ. Sci. Biotechnol. 7(2008) 173-190.[3] Y. Hu, X. Hao, D. Zhao, K. Fu, Enhancing the CH4 yield of anaerobic digestion via endogenous CO2 fixation by exogenous H2, Chemosphere 140(2015) 34-39.[4] I. Bassani, P.G. Kougias, L. Treu, I. Angelidaki, Biogas upgrading via hydrogenotrophic methanogenesis in two-stage continuous stirred tank reactors at mesophilic and thermophilic conditions, Environ. Sci. Technol. 49(2015) 12585-12593.[5] P.G.K. Ilaria Bassani, Laura Treu, Irini Angelidaki, Biogas upgrading via hydrogenotrophic methanogenesis in two-stage continuous stirred tank reactors at mesophilic and thermophilic conditions, Environ. Sci. Technol. 49(2015) 12585-12593.[6] L. Jourdin, S. Freguia, V. Flexer, J. Keller, Bringing high-rate, CO2-based microbial electrosynthesis closer to practical implementation through improved electrode design and operating conditions, Environ. Sci. Technol. 50(2016) 1982-1989.[7] L. Li, Q. He, Y. Ma, X. Wang, X. Peng, A mesophilic anaerobic digester for treating food waste:process stability and microbial community analysis using pyrosequencing, Microb. Cell Factories 15(2016) 65.[8] K. Sri Bala Kameswari, C. Kalyanaraman, S. Porselvam, K. Thanasekaran, Optimization of inoculum to substrate ratio for bio-energy generation in co-digestion of tannery solid wastes, Clean Technol. Environ. Policy 14(2012) 241-250.[9] Z. Zhao, Y. Zhang, T.L. Woodard, K.P. Nevin, D.R. Lovley, Enhancing syntrophic metabolism in up-flow anaerobic sludge blanket reactors with conductive carbon materials, Bioresour. Technol. 191(2015) 140-145.[10] F.G. Pohland, S. Ghosh, Developments in anaerobic stabilization of organic wastes-the two-phase concept, Environ. Lett. 1(1971) 255-266.[11] A.S. Dieter Deublein, Biogas from Waste and Renewable Resources. An Introduction, Wiley-VCH Velag GmbH & Co. KGaA, 2008.[12] S.T. Oh, A.D. Martin, Glucose contents in anaerobic ethanol stillage digestion manipulate thermodynamic driving force in between hydrogenophilic and acetoclastic methanogens, Chem. Eng. J. 243(2014) 526-536.[13] D.L. Wise, C.L. Cooney, D.C. Augenstein, Biomethanation-anaerobic fermentation of CO2, H2, and CO to methane, Biotechnol. Bioeng. 20(1978) 1153-1172.[14] W. Huang, Z. Wang, Y. Zhou, W.J. Ng, The role of hydrogenotrophic methanogens in an acidogenic reactor, Chemosphere 140(2015) 40-46.[15] H. Xu, S. Gong, Y. Sun, H. Ma, M. Zheng, K. Wang, High-rate hydrogenotrophic methanogenesis for biogas upgrading:the role of anaerobic granules, Environ. Technol. 36(2015) 529-537.[16] G. Luo, I. Angelidaki, Integrated biogas upgrading and hydrogen utilization in an anaerobic reactor containing enriched hydrogenotrophic methanogenic culture, Biotechnol. Bioeng. 109(2012) 2729-2736.[17] W.-M. Wu, M.K. Jain, E.C. de Macario, J.H. Thiele, J.G. Zeikus, Microbial composition and characterization of prevalent methanogens and acetogens isolated from syntrophic methanogenic granules, Appl. Microbiol. Biotechnol. 38(1992) 282-290.[18] M. Villano, G. Monaco, F. Aulenta, M. Majone, Electrochemically assisted methane production in a biofilm reactor, J. Power Sources 196(2011) 9467-9472.[19] H. Xu, K. Wang, D.E. Holmes, Bioelectrochemical removal of carbon dioxide (CO2):an innovative method for biogas upgrading, Bioresour. Technol. 173(2014) 392-398.[20] G. Luo, S. Johansson, K. Boe, L. Xie, Q. Zhou, I. Angelidaki, Simultaneous hydrogen utilization and in situ biogas upgrading in an anaerobic reactor, Biotechnol. Bioeng. 109(2012) 1088-1094.[21] G. Luo, I. Angelidaki, Co-digestion of manure and whey for in situ biogas upgrading by the addition of H-2:process performance and microbial insights, Appl. Microbiol. Biotechnol. 97(2013) 1373-1381.[23] V. Siriwongrungson, R.J. Zeng, I. Angelidaki, Homoacetogenesis as the alternative pathway for H2 sink during thermophilic anaerobic degradation of butyrate under suppressed methanogenesis, Water Res. 41(2007) 4204-4210.[24] D.G. Mulat, F. Mosbaek, A.J. Ward, D. Polag, M. Greule, F. Keppler, J.L. Nielsen, A. Feilberg, Exogenous addition of H2 for an in situ biogas upgrading through biological reduction of carbon dioxide into methane, Waste Manag. 68(2017) 146-156.[25] S.R. Guiot, R. Cimpoia, G. Carayon, Potential of wastewater-treating anaerobic granules for Biomethanation of synthesis gas, Environ. Technol. 45(2011) 2006-2012.[26] D. Pant, A. Singh, G. Van Bogaert, S.I. Olsen, P.S. Nigam, L. Diels, K. Vanbroekhoven, Bioelectrochemical systems (BES) for sustainable energy production and product recovery from organic wastes and industrial wastewaters, RSC Adv. 2(2012) 1248-1263.[27] M. Villano, S. Scardala, F. Aulenta, M. Majone, Carbon and nitrogen removal and enhanced methane production in a microbial electrolysis cell, Bioresour. Technol. 130(2013) 366-371.[28] S. Gajaraj, Y. Huang, P. Zheng, Z. Hu, Methane production improvement and associated methanogenic assemblages in bioelectrochemically assisted anaerobic digestion, Biochem. Eng. J. 117(Part B) (2017) 105-112.[29] B.E. Logan, K. Rabaey, Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies, Science 337(2012) 686-690.[30] R.A. Rozendal, A.W. Jeremiasse, H.V.M. Hamelers, C.J.N. Buisman, Hydrogen production with a microbial biocathode, Environ. Sci. Technol. 42(2008) 629-634.[31] H. Liu, B.E. Logan, Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane, Environ. Sci. Technol. 38(2004) 4040-4046.[32] M. Su, L. Wei, Z. Qiu, G. Wang, J. Shen, Hydrogen production in single chamber microbial electrolysis cells with stainless steel fiber felt cathodes, J. Power Sources 301(2016) 29-34.[33] W.W. Cai, W.Z. Liu, C.X. Yang, L. Wang, B. Liang, S. Thangavel, Z.C. Guo, A.J. Wang, Biocathodic methanogenic community in an integrated anaerobic digestion and microbial electrolysis system for enhancement of methane production from waste sludge, ACS Sustain. Chem. Eng. 4(2016) 4913-4921.[34] W. Liu, W. Cai, Z. Guo, L. Wang, C. Yang, C. Varrone, A. Wang, Microbial electrolysis contribution to anaerobic digestion of waste activated sludge, leading to accelerated methane production, Renew. Energy 91(2016) 334-339.[35] D.F. Call, B.E. Logan, A method for high throughput bioelectrochemical research based on small scale microbial electrolysis cells, Biosens. Bioelectron. 26(2011) 4526-4531.[36] D.F.M. Call, Matthew D. Logan, E. Bruce, High surface area stainless steel brushes as cathodes in microbial electrolysis cells, Environ. Sci. Technol. 43(2009) 2179-2183.[37] S. Farhangi, S. Ebrahimi, M.S. Niasar, Commercial materials as cathode for hydrogen production in microbial electrolysis cell, Biotechnol. Lett. 36(2014) 1987-1992.[38] A. Kadier, M.S. Kalil, P. Abdeshahian, K. Chandrasekhar, A. Mohamed, N.F. Azman, W. Logrono, Y. Simayi, A.A. Hamid, Recent advances and emerging challenges in microbial electrolysis cells (MECs) for microbial production of hydrogen and value-added chemicals, Renew. Sust. Energ. Rev. 61(2016) 501-525.[39] A. Kadier, Y. Simayi, K. Chandrasekhar, M. Ismail, M.S. Kalil, Hydrogen gas production with an electroformed Ni mesh cathode catalysts in a single-chamber microbial electrolysis cell (MEC), Int. J. Hydrog. Energy 40(2015) 14095-14103.[40] A. Kundu, J.N. Sahu, G. Redzwan, M.A. Hashim, An overview of cathode material and catalysts suitable for generating hydrogen in microbial electrolysis cell, Int. J. Hydrog. Energy 38(2013) 1745-1757.[41] Y. Zhang, Y. Wang, I. Angelidaki, Alternate switching between microbial fuel cell and microbial electrolysis cell operation as a new method to control H2O2 level in bioelectro-fenton system, J. Power Sources 291(2015) 108-116.[42] W. Cai, T. Han, Z. Guo, C. Varrone, A. Wang, W. Liu, Methane production enhancement by an independent cathode in integrated anaerobic reactor with microbial electrolysis, Bioresour. Technol. 208(2016) 13-18.[43] W. Cai, W. Liu, D. Cui, A. Wang, Hydrogen production from buffer-free anaerobic fermentation liquid of waste activated sludge using microbial electrolysis system, RSC Adv. 6(2016) 38769-38773.[44] Y.-k. Zhang, X.-h. Liu, X.-w. Liu, Y.-f. Zha, X.-l. Xu, Z.-g. Ren, H.-c. Jiang, H.-c. Wang, Research advances in deriving renewable energy from biomass in wastewater treatment plants, RSC Adv. 6(2016) 55903-55918.[45] Z. Guo, S. Thangavel, L. Wang, Z. He, W. Cai, A. Wang, W. Liu, Efficient methane production from beer wastewater in a membraneless microbial electrolysis cell with a stacked cathode:the effect of the cathode/anode ratio on bioenergy recovery, Energy Fuel 31(2017) 615-620.[46] C. Liu, B.C. Colon, M. Ziesack, P.A. Silver, D.G. Nocera, Water splitting-biosynthetic system with CO2 reduction efficiencies exceeding photosynthesis, Science 352(2016) 1210-1213.[47] A.J. Esswein, Y. Surendranath, S.Y. Reece, D.G. Nocera, Highly active cobalt phosphate and borate based oxygen evolving catalysts operating in neutral and natural waters, Energy Environ. Sci. 4(2011) 499-504.[48] D.J. Batstone, J. Keller, I. Angelidaki, S.V. Kalyuzhnyi, S.G. Pavlostathis, A. Rozzi, W.T.M. Sanders, H. Siegrist, V.A. Vavilin, Anaerobic Digestion Model No. 1(ADM1), IWA Task Group for Mathematical Modelling of Anaerobic Digestion Processes, IWA Publishing, London, UK, 2002.[49] B. Wett, A. Eladawy, M. Ogurek, Description of nitrogen incorporation and release in ADM1, Water Sci. Technol. 54(2006) 67-76.[50] I.f.A.u.K.e.V.M. Werner-Heisenberg-Str, User Guide of the Software SIMBA# Biogas, 2016.[51] I. Paseka, J. Velicka, Hydrogen evolution and hydrogen sorption on amorphous smooth Me-P(x) (Me=Ni, Co and Fe-Ni) electrodes, Electrochim. Acta 42(1997) 237-242.[52] N. Adu-Gyamfi, S.R. Ravella, P.J. Hobbs, Optimizing anaerobic digestion by selection of the immobilizing surface for enhanced methane production, Bioresour. Technol. 120(2012) 248-255.[53] B.E.L., D.F. Call, A method for high throughput bioelectrochemical research based on small scale microbial electrolysis cells, Biosens. Bioelectron. 26(2011).[54] M. Badshah, D.M. Lam, J. Liu, B. Mattiasson, Use of an automatic methane potential test system for evaluating the biomethane potential of sugarcane bagasse after different treatments, Bioresour. Technol. 114(2012) 262-269.[55] E.W. Rice, R.B. Baird, A.D. Eaton, L.S. Clesceri, Standard Methods for the Examination of Water and Wastewater, 22nd edition APHA-AWWA-WEF, 20121496.[56] G. Esposito, L. Frunzo, A. Panico, F. Pirozzi, Model calibration and validation for OFMSW and sewage sludge co-digestion reactors, Waste Manag. 31(2011) 2527-2535.[57] E. Nordlander, E. Thorin, J. Yan, Investigating the possibility of applying an ADM1 based model to a full-scale co-digestion plant, Biochem. Eng. J. 120(2017) 73-83.[58] D. Montecchio, A. Gallipoli, A. Gianico, G. Mininni, P. Pagliaccia, C.M. Braguglia, Biomethane potential of food waste:modeling the effects of mild thermal pretreatment and digestion temperature, Environ. Technol. 38(2016) 1452-1464.[59] C. Mendes, K. Esquerre, L.M. Queiroz, Application of anaerobic digestion model no. 1 for simulating anaerobic mesophilic sludge digestion, Waste Manag. 35(2015) 89-95.[60] K. Koch, M. Luebken, T. Gehring, M. Wichern, H. Horn, Biogas from grass silage-measurements and modeling with ADM1, Bioresour. Technol. 101(2010) 8158-8165.[61] M.M.D., D.F. Call, B.E. Logan, High surface area stainless steel brushes as cathodes in microbial electrolysis cells, Environ. Sci. Technol. 43(2009) 2179-2183.[62] T. Bo, X. Zhu, L. Zhang, Y. Tao, X. He, D. Li, Z. Yan, A new upgraded biogas production process:coupling microbial electrolysis cell and anaerobic digestion in singlechamber, barrel-shape stainless steel reactor, Electrochem. Commun. 45(2014) 67-70.[63] K. Hagos, J. Zong, D. Li, C. Liu, X. Lu, Anaerobic co-digestion process for biogas production:progress, challenges and perspectives, Renew. Sust. Energ. Rev. 76(2017) 1485-1496.[64] S. Chen, A.-E. Rotaru, P.M. Shrestha, N.S. Malvankar, F. Liu, W. Fan, K.P. Nevin, D.R. Lovley, Promoting interspecies electron transfer with biochar, Sci. Rep. 4(2014) 5019.[65] D.J. Batstone, C. Picioreanu, M.C.M. van Loosdrecht, Multidimensional modelling to investigate interspecies hydrogen transfer in anaerobic biofilms, Water Res. 40(2006) 3099-3108. |
[1] | Jindong Dai, Chi Zhai, Jiali Ai, Guangren Yu, Haichao Lv, Wei Sun, Yongzhong Liu. A cellular automata framework for porous electrode reconstruction and reaction-diffusion simulation [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 262-274. |
[2] | Danlei Chen, Yiqing Luo, Xigang Yuan. Cascade refrigeration system synthesis based on hybrid simulated annealing and particle swarm optimization algorithm [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 244-255. |
[3] | Yu Wang, Qunfeng Zhang, Xinlei Liu, Junqi Weng, Guanghua Ye, Xinggui Zhou. Probing deactivation by coking in catalyst pellets for dry reforming of methane using a pore network model [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 293-303. |
[4] | Hany M. Abd El-Lateef, Mai M. Khalaf, K. Shalabi, Antar A. Abdelhamid. Multicomponent synthesis and designing of tetrasubstituted imidazole compounds catalyzed via ionic-liquid for acid steel corrosion protection: Experimental exploration and theoretical calculations [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 304-319. |
[5] | Yimin Zhang, Ruiming Zeng, Yun Zu, Linhua Zhu, Yi Mei, Yongming Luo, Dedong He. Low-temperature dry reforming of methane tuned by chemical speciations of active sites on the SiO2 and γ-Al2O3 supported Ni and Ni-Ce catalysts [J]. Chinese Journal of Chemical Engineering, 2022, 48(8): 76-90. |
[6] | Xiang Wu, Yuzhou Hou, Kanjian Zhang, Ming Cheng. Dynamic optimization of 1,3-propanediol fermentation process: A switched dynamical system approach [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 192-204. |
[7] | Xinyu Yan, Bobo Wang, Hongxia Liang, Jie Yang, Jie Zhao, Fabrice Ndayisenga, Hongxun Zhang, Zhisheng Yu, Zhi Qian. Enhanced straw fermentation process based on microbial electrolysis cell coupled anaerobic digestion [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 239-245. |
[8] | Xin Jiang, Baojiang Sun, Zhiyuan Wang, Wantian Zhou, Jiakai Ji, Litao Chen. Methane hydrate crystal growth on shell substrate [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 50-61. |
[9] | Tongan Yan, Dahuan Liu, Qingyuan Yang, Chongli Zhong. Screening and design of COF-based mixed-matrix membrane for CH4/N2 separation [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 170-177. |
[10] | Tao Tian, Yayan Wang, Bing Liu, Zhaoyang Ding, Xinxi Xu, Meisheng Shi, Jun Ma, Yanjun Zhang, Donghui Zhang. Simulation and experiment of six-bed PSA process for air separation with rotating distribution valve [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 329-337. |
[11] | Wenhui Yang, Haoyu Yin, Zhihong Yuan, Bingzhen Chen. Flexibility analysis for continuous ibuprofen manufacturing processes [J]. Chinese Journal of Chemical Engineering, 2022, 51(11): 115-125. |
[12] | Jia Ren, Feng Xin, Yongsheng Xu. A review on direct synthesis of dimethoxymethane [J]. Chinese Journal of Chemical Engineering, 2022, 50(10): 43-55. |
[13] | Yu Zhang, Lei Zhang, Chang Chen, Hao-Peng Zeng, Xiao-Sen Li, Bo Yang. Role of different types of water in bentonite clay on hydrate formation and decomposition [J]. Chinese Journal of Chemical Engineering, 2022, 50(10): 310-316. |
[14] | Yubai Liu, Zhiyuan Yu, Thomas Pelster, Ting-Tai Lee, Yujun Wang, Guangsheng Luo. Establishment of nucleation and growth model of silica nanostructured particles and comparison with experimental data [J]. Chinese Journal of Chemical Engineering, 2022, 50(10): 379-388. |
[15] | Danlei Chen, Yiqing Luo, Xigang Yuan. Refrigeration system synthesis based on de-redundant model by particle swarm optimization algorithm [J]. Chinese Journal of Chemical Engineering, 2022, 50(10): 412-422. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||