[1] S. Pashah, A. Moinuddin, S.M. Zubair, Thermal performance and optimization of hyperbolic annular fins under dehumidifying operating conditions-analytical and numerical solutions, Int. J. Refrig. 65(2016) 42-54.[2] P. Wang, C. Yang, X. Tian, et al., Adaptive nonlinear model predictive control using an on-line support vector regression updating strategy, Chin. J. Chem. Eng. 22(7) (2014) 774-781.[3] Z. Fei, K. Liu, B. Hu, et al., An efficient latent variable optimization approach with stochastic constraints for complex industrial process, Chin. J. Chem. Eng. 23(10) (2015) 1670-1678.[4] F. Xu, H. Jiang, R. Wang, et al., Influence of design margin on operation optimization and control performance of chemical processes, Chin. J. Chem. Eng. 22(1) (2014) 51-58.[5] Y. Liu, F. Wang, Y. Chang, Operating optimality assessment based on optimality related variations and nonoptimal cause identification for industrial processes, J. Process Control 39(2016) 11-20.[6] L. Ye, Y. Liu, Z. Fei, et al., Online probabilistic assessment of operating performance based on safety and optimality indices for multimode industrial processes, Ind. Eng. Chem. Res. 48(24) (2009) 10912-10923.[7] Y. Liu, Y. Chang, F. Wang, Online process operating performance assessment and nonoptimal cause identification for industrial processes, J. Process Control 24(10) (2014) 1548-1555.[8] Y. Liu, Y. Chang, F. Wang, et al., Complex process operating optimality assessment and nonoptimal cause identification using modified total kernel PLS, The 26th Chinese Control and Decision Conference. IEEE 2014, pp. 1221-1227.[9] D. Zhou, G. Li, S.J. Qin, Total projection to latent structures for process monitoring, AIChE J. 56(1) (2010) 168-178.[10] H. Li, D.Y. Xiao, Survey on data driven fault diagnosis methods, Control Decis. 26(1) (2011) 1-9.[11] Y. Wang, H. Cao, Y. Zhou, et al., Nonlinear partial least squares regressions for spectral quantitative analysis, Chemom. Intell. Lab. Syst. 148(2015) 32-50.[12] Y. Liu, F. Wang, Y. Chang, et al., Operating optimality assessment and nonoptimal cause identification for non-Gaussian multimode processes with transitions, Chem. Eng. Sci. 137(2015) 106-118.[13] Y. Xu, X. Deng, Fault detection of multimode non-Gaussian dynamic process using dynamic Bayesian independent component analysis, Neurocomputing 200(2016) 70-75.[14] Z. Mao, Y. Chang, L. Zhao, Soft-sensor for copper extraction process in cobalt hydrometallurgy based on adaptive hybrid model, Chem. Eng. Res. Des. 89(6) (2011) 722-728.[15] Runda Jia, Zhizhong Mao, Yuqing Chang, Shuning Zhang, Kernel partial robust M-regression as a flexible robust nonlinear modeling technique, Chemom. Intell. Lab. Syst. 100(2) (2010) 91-98.[16] I. Hoffmann, S. Serneels, P. Filzmoser, et al., Sparse partial robust M regression, Chemom. Intell. Lab. Syst. 149(2015) 50-59.[17] L.I. Gang, Q.I.N. Si-Zhao, J.I. Yin-Dong, et al., Total PLS based contribution plots for fault diagnosis, Acta Automat. Sin. 35(6) (2009) 759-765.[18] J.J. Lee, C.H. Lim, H.S. Son, et al., In vitro evaluation of the performance of Korean pulsatile ECLS (T-PLS) using precise quantification of pressure-flow waveforms, ASAIO J. 51(5) (2005) 604-608.[19] S. Yin, X. Zhu, O. Kaynak, Improved PLS focused on key-performance-indicatorrelated fault diagnosis, IEEE Trans. Ind. Electron. 62(3) (2015) 1651-1658.[20] J. Gonzalez, D. Pena, R. Romera, A robust partial least squares regression method with applications, J. Chemom. 23(2) (2009) 78-90.[21] J. Liu, D.S. Chen, Fault isolation using modified contribution plots, Comput. Chem. Eng. 61(2014) 9-19.[22] K. Peng, K. Zhang, G. Li, et al., Contribution rate plot for nonlinear quality-related fault diagnosis with application to the hot strip mill process, Control. Eng. Pract. 21(4) (2013) 360-369.[23] J. Bai, Y. Xing, Y. Chen, Application of three products heavy medium coal preparation process in Tangshan Chun'ao coal preparation plant, Clean Coal Technol. 19(3) (2013) 26-29.[24] M. Wang, L. Tang, The introduction and selection of the wear-resistant material used for the heavy medium pipeline in coal preparation plant, Coal Qual. Technol. 1(2011) 69-72.[25] D. Dou, J. Yang, J. Liu, et al., A novel distribution rate predicting method of dense medium cyclone in theTaixi coal preparation plant, Int. J. Miner. Process. 142(2015) 51-55.[26] J. Chen, K.W. Chu, R.P. Zou, et al., Prediction of the performance of dense medium cyclones in coal preparation, Miner. Eng. 31(5) (2012) 59-70. |