Chin.J.Chem.Eng. ›› 2018, Vol. 26 ›› Issue (5): 1179-1191.DOI: 10.1016/j.cjche.2017.11.006
• Energy, Resources and Environmental Technology • Previous Articles Next Articles
Grazia Leonzio
Received:
2017-07-02
Revised:
2017-09-23
Online:
2018-06-29
Published:
2018-05-28
Grazia Leonzio
作者简介:
Grazia Leonzio,E-mail address:grazia.leonzio@graduate.univaq.it
Grazia Leonzio. An innovative trigeneration system using biogas as renewable energy[J]. Chin.J.Chem.Eng., 2018, 26(5): 1179-1191.
Grazia Leonzio. An innovative trigeneration system using biogas as renewable energy[J]. Chinese Journal of Chemical Engineering, 2018, 26(5): 1179-1191.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2017.11.006
[1] M.S. Rocha, R. Andreos, J.R. Simoes-Moreira, Performance tests of two small trigeneration pilot plants, Appl. Therm. Eng. 41(2012) 84-91.[2] IEA-International Energy Agency, Key world energy statisticsAvailableat:www.iea.org 2012, Accessed date:29 June 2013.[3] D.B. do Espirito Santo, W.L.R. Gallo, Utilizing primary energy savings and exergy destruction to compare centralized thermal plants and cogeneration/trigeneration systems, Energy 120(2017) 785-795.[4] Y.Y. Jing, H. Bai, J.J. Wang, A fuzzy multi-criteria decision-making model for CCHP systems driven by different energy sources, Energy Policy 42(2012) 286-296.[5] M. Carvalho, L.M. Serra, M.A. Lozano, Optimal synthesis of trigeneration systems subject to environmental constraints, Energy 36(2011) 3779-3790.[6] N. Fumo, P.J. Mago, K. Jacobs, Design considerations for combined cooling, heating, and power systems at altitude, Energy Convers. Manag. 52(2011) 1459-1469.[7] S.G. Tichi, M.M. Ardehali, M.E. Nazari, Examination of energy price policies in Iran for optimal configuration of CHP and CCHP systems based on particle swarm optimization algorithm, Energy Policy 38(2010) 6240-6250.[8] E. Cetinkaya, Experimental investigation and modeling of integrated tri-generation systems, Doctor of Philosophy in the Faculty of Engineering and Applied Science Mechanical Engineering Program University of Ontario Institute of Technology, 2013.[9] E. Cardona, A. Piacentino, A measurement methodology for monitoring CHCP pilot plant for an office building, Energy Build. 35(2003) 919-925.[10] G. Angrisani, A. Rosato, C. Roselli, M. Sasso, S. Sibilio, Experimental results of a microtrigeneration installation, Appl. Therm. Eng. 38(2012) 78-90.[11] O. Balli, H. Aras, A. Hepbasli, Thermodynamic and thermos-economic analyses of a trigeneration (TRIGEN) system with a gas-diesel engine:Part Ⅱ-An application, Energy Convers. Manag. 51(2010) 2260-2271.[12] H. Ghaebi, M. Amidpour, S. Karimkashi, O. Rezayan, Energy, exergy and thermoeconomic analysis of a combined cooling, heating and power (CCHP) system with gas turbine prime mover, Int. J. Energy Res. 35(2011) 697-709.[13] M. Moya, J.C. Bruno, P. Eguia, E. Torres, I. Zamora, A. Coronas, Performance analysis of a trigeneration system based on a micro gas turbine and an air-cooled, indirect fired, ammonia water absorption chiller, Appl. Energy 88(2011) 4424-4440.[14] M. Badami, M. Ferrero, A. Portoraro, Experimental tests of a small-scale micro-turbine with a liquid desiccant cooling system, Int. J. Energy Res. 37(2013) 1069-1078.[15] M.F.B. Basrawi, T. Yamada, K. Nakashini, H. Katsumata, Analysis of the performance of biogas-fuelled micro gas turbine cogeneration system (MGT-CGSs) in middle and small scale sewage treatment plants:comparison of performance and optimization of MGTs with various electrical power outputs, Energy 30(2012) 291-304.[16] Z. Yu, J. Han, X. Cao, W. Chen, B. Zhang, Analysis of total energy system based on solid oxide fuel cell for combined cooling and power applications, Int. J. Hydrog. Energy 35(2010) 2703-2707.[17] F.A. Al-Sulaiman, F. Hamdullahpur, I. Dincer, Trigeneration:A comprehensive review based on prime movers, Int. J. Energy Res. 35(2011) 233-258.[18] X.Q. Kong, R.Z. Wang, X.H. Huang, Energy efficiency and economic feasibility of CCHP driven by stirling engine, Energy Convers. Manag. 45(2004) 1433-1442.[19] A. Knizley, P.J. Mago, Evaluation of combined heat and power (CHP) systems performance with dual power generation units for different building configurations, Int. J. Energy Res. 37(2013) 1529-1538.[20] W.B. Buescher, Trigeneration:Principles, Feasibility, and Energy Price Sensitivity, North Carolina State Univ, Raleigh, 2011.[21] Q.A. Acton, Issues in Engineering Research and Application, 2013 ed. Scholarly Editions, Atlanta, GA, 2013.[22] A. Thumann, Plant Engineers and Managers Guide to Energy Conservation, The Fairmont Press, Lilburn, GA, 2010.[23] A. Ziebik, K. Hoinka, Energy Systems of Complex Buildings:Green Energy and Technology, Springer-Verlag, London, UK, 2012.[24] M.M. El-Halwagi, Sustainable Design through Process Integration:Fundamentals and Applications to Industrial Pollution Prevention, Resource Conservation, and Profitability Enhancement, Elsevier, Oxford, UK, 2011.[25] S. de Oliveira Jr., Exergy:Production, Cost and Renewability, Springer-Verlag, London, UK, 2012.[26] M. Jradi, S. Riffat, Trigeneration systems:energy policies, prime movers, cooling technologies, configurations and operation strategies, Renew. Sustain. Energy Rev. 32(2014) 396-415.[27] S. Campanari, L. Boncompagni, E. Macchi, Microturbines and trigeneration:optimization strategies and multiple engine configuration effects, J. Eng. Gas Turbines Power 126(2004) 92-101.[28] J.C. Bruno, A. Valero, A. Coronas, Performance analysis of combined microgas turbines and gas fired water/LiBr absorption chillers with post-combustion, Appl. Therm. Eng. 25(2005) 87-99.[29] Y. Hwang, Potential energy benefits of integrated refrigeration system with microturbine and absorption chiller, Int. J. Refrig. 27(2004) 816-829.[30] D.B. de Espirito Santo, An energy and exergy analysis of a high-efficiency engine trigeneration system for a hospital:A case study methodology based on annual energy demand profiles, Energy Build. 76(2014) 185-198.[31] S. Chao, A.D. Smith, P. Mago, Combined cooling, heating and power:a review of performance improvement and optimization, Appl. Energy 136(2014) 168-185.[32] E. Jannelli, E. Minutillo, R. Cozzolino, G. Falcucci, Thermodynamic performance assessment of a small size CCHP (combined cooling heating and power) system with numerical models, Energy 65(2014) 240-249.[33] S.A. Tassou, I. Chaer, N. Suguartha, T. Ge, D. Marriott, Application of trigeneration systems to the food retail industry, Energy Convers. Manag. 48(2007) 2988-2995.[34] M. Ameri, A. Behbahaninia, A.A. Tanha, Thermodynamic analysis of a tri-generation system based on micro-gas turbine with a steam ejector refrigeration system, Energy 35(2010) 2203-2209.[35] F. Meunier, C. Chevalier, Environmental assessment of biogas co-or trigeneration units by life cycle analysis methodology, Appl. Therm. Eng. 25(2005) 3025-3041.[36] F. Meunier, Co-and tri-generation contribution to climate change control, Appl. Therm. Eng. 22(2002) 703-718.[37] M. Carvalho, M. Lozano, L. Serra, Multicriteria synthesis of trigeneration systems considering economic and environmental aspects, Appl. Energy 91(2012) 245-254.[38] P. Mancarella, MES (multi-energy systems):An overview of concepts and evaluation models, Energy 1(2013) 1-17.[39] G. Temir, D. Bilge, G. Emanet, An application of trigeneration and its economic analysis, Energy Sources 26(2004) 857-867.[40] U. Eicker, Biomass trigeneration with decentral cooling by district heating networks, Proceedings of 2nd Polygeneration Conference, Tarragona, 2011.[41] J.C. Bruno, V. Ortega-Lopez, A. Coronas, Integration of absorption cooling systems into micro gas turbine trigeneration systems using biogas:Case study of a sewage treatment plant, Appl. Energy 86(2009) 837-847.[42] Y. Huang, Y.D. Wang, S. Rezvani, D.R. McIlveen-Wright, M. Anderson, N.J. Hewitt, Biomass fuelled trigeneration system in selected buildings, Energy Convers. Manag. 52(2011) 2448-2454.[43] J.J. Wang, K. Yang, Z.L. Xu, C. Fu, Energy and exergy analyses of an integrated CCHP system with biomass air gasification, Appl. Energy 142(2015) 317-327.[44] D. Maraver, A. Sin, F. Sebastian, J. Royo, Environmental assessment of CCHP (combined cooling heating and power) systems based on biomass combustion in comparison to conventional generation, Energy 57(2013) 17-23.[45] P. Balcombe, D. Rigby, A. Azapagic, Environmental impacts of microgeneration:Integrating solar PV, stirling engine CHP and battery storage, Appl. Energy 139(2015) 245-259.[46] J. Wang, Y. Yang, T. Mao, J. Sui, H. Jin, Life cycle assessment (LCA) optimization of solar-assisted hybrid CCHP system, Appl. Energy 146(2015) 38-52.[47] P. Mancarella, G. Chicco, Assessment of the greenhouse gas emissions from cogeneration and trigeneration systems. Part Ⅱ:Analysis techniques and application cases, Energy 33(2008) 418-430.[48] D. Xu, Q. Liu, J. Lei, et al., Performance of a combined cooling heating and power system with mid-and-low temperature solar thermal energy and methanol decomposition integration, Energy Convers. Manag. 102(2015) 17-25.[49] F.A. Al-Sulaiman, Thermodynamic Modeling and Thermoeconomic Optimization of Integrated Trigeneration Plants Using Organic Rankine Cycles(Ph.D. dissertation) Dept. of Mech. Eng., Univ. of Waterloo, Waterloo, ON, 2010.[50] K.J. Chua, W.M. Yang, T.Z. Wong, C.A. Ho, Integrating renewable energy technologies to support building trigeneration-A multi-criteria analysis, Renew. Energy 41(2012) 358-367.[51] W. Gazda, W. Stanek, Energy and environmental assessment of integrated biogas trigeneration and photovoltaic plant as more sustainable industrial system, Appl. Energy 169(2016) 138-149.[52] A. Buonomano, F. Calise, A. Palombo, M. Vicidomini, Energy and economic analysis of geothermal-solar trigeneration systems:A case study for a hotel building in ischia, Appl. Energy 138(2015) 224-241.[53] A. Arteconi, C. Brandoni, F. Polonara, Distributed generation and trigeneration:Energy saving opportunities in Italian supermarket sector, Appl. Therm. Eng. 29(2009) 1735-1743.[54] K. Cacua, L.O. Villallba, B. Herrera, A. Gallego, Experimental evaluation of a dieselbiogas dual fuel engine operated on micro-trigeneration system for power, drying and cooling, Appl. Therm. Eng. 100(2016) 762-767.[55] X. Zhang, H. Li, L. Liu, R. Zeng, G. Zhang, Analysis of trigeneration system taking solar energy and biomass as co-feeds, Energy Convers. Manag. 122(2016) 74-84.[56] H. Li, X. Zhang, L. Liu, R. Zeng, G. Zhang, Exergy and environmental assessment of a novel trigeneration system taking biomass and solar energy as co-feeds, Appl. Therm. Eng. 104(2016) 697-706.[57] O.J. Shariatzadeh, A.H. Refahi, M. Rahmani, S.S. Abolhassani, Economic optimization and thermodynamics modelling of SOFC trigeneration system fed by biogas, Energy Convers. Manag. 105(2015) 772-781.[58] J. Wang, T. Mao, J. Sui, et al., Modeling and performance analysis of CCHP (combined cooling, heating and power) system based on co-firing of natural gas and biomass gasification gas, Energy 93(2015) 801-815.[59] C. Celis, G.R.S. Pinto, T. Teixeira, E. Xavier, A steam turbine dynamic model for full scope power plant simulators, Appl. Therm. Eng. 120(2017) 593-602.[60] G.V.P. Varma, T. Srinivas, Power generation from low temperature heat recovery, Renew. Sustain. Energy Rev. 75(2017) 402-414.[61] G. Leonzio, Mathematical model of absorption and hybrid heat pump, Chin. J. Chem. Eng. 25(10) (2017) 1492-1504.[62] P. Chatzitakis, B. Dawoud, An alternative approach towards absorption heat pump working pair screening, Renew. Energy 110(2017) 47-58.[63] S. Manu, T.K. Chandrashekar, A simulation study on performance evaluation of single-stage LiBr-H2O vapor absorption heat pump for chip cooling, Int. J. Sustain. Built Environ. 5(2016) 370-386.[64] A. Iranmanesh, M.A. Mehrabian, Thermodynamic modelling of a double-effect LiBr-H2O absorption refrigeration cycle, Heat Mass Transf. 48(2012) 2113-2123.[65] K. Ebrahimi, G.F. Jones Fleischer, A.S. Fleischer, Thermo-economic analysis of steady state waste heat recovery in data centers using absorption refrigeration, Appl. Energy 139(2015) 384-397.[66] A.M. Pantaleo, S.M. Camporeale, C.N. Markides, G.S. Mugnozza, N. Shah, Energy performance and thermo-economic assessment of a microturbine-based dual-fuel gas-biomass trigeneration system, Energy Procedia 105(2017) 764-772.[67] M. Saikawa, S. Koyama, Thermodynamic analysis of vapor compression heat pump cycle for tap water heating and development of CO2 heat pump water heater for residential use, Appl. Therm. Eng. 106(2016) 1236-1243.[68] F. Billiard, New trends in refrigerating equipment and refrigerants, Proceedings of Xth European Conference on Technological Innovations in Air Conditioning and Refrigeration Industry, 2003.[69] D. Yang, Y. Song, F. Cao, L. Jin, X. Wang, Theoretical and experimental investigation of a combined R134a and transcritical CO2 heat pump for space heating, Int. J. Refrig. 72(2016) 156-170.[70] Y. Song, D. Li, D. Yang, L. Jin, F. Cao, X. Wang, Performance comparison between the combined R134a/CO2 heat pump and cascade R134a/CO2, Int. J. Refrig. 74(2017) 592-605.[71] B.A. Qureschi, S.M. Zubair, The effect of refrigerant combinations on performance of a vapor compression system with dedicated mechanical subcooling, Int. J. Refrig. 35(2012) 47-57.[72] A. Haghtalab, J.H. Vera, A nonrandom factor model for the excess Gibbs energy of electrolyte solutions, AICHE J. 34(1988) 803-813.[73] J.M. Prausnitz, R.N. Lichtenthaler, E.G. de Azevedo, Molecular Thermodynamics of Fluid Phase Equilibria, third ed. Prentice Hall, New Jersey, 1999537-556.[74] G. Leonzio, Recovery of metal sulphates and hydrochloric acid from spent pickling liquors, J. Clean. Prod. 129(2016) 417-426.[75] J. Gao, Y. Wang, Y. Ping, D. Hu, G. Xu, F. Gu, F. Su, A thermodynamic analysis of methanation reactions of carbon oxides for the production of synthetic natural gas, RSC Adv. 2(2012) 2358-2368.[76] M.K. Nikoo, N. Amin, Thermodynamic analysis of carbon dioxide reforming of methane in view of solid carbon formation, Fuel Process. Technol. 92(2011) 678-691.[77] C. Lundstrom, M.L. Michelsen, G.M. Kontogeorgis, K.S. Pedersen, H. Sorensen, Comparison of the SRK and CPA equations of state for physical properties of water and methanol, Fluid Phase Equilib. 247(2006) 149-157.[78] J.E. Edwards, Process Modelling Selection of Thermodynamic Methods, P&I Design Ltd., 2001 available on www.pidesign.co.uk.[79] M. Yang, S.Y. Lee, J.T. Chung, Y.T. Kang, High efficiency H2O/LiBr double effect absorption cycles with multi-heat sources for tri-generation application, Appl. Energy 187(2017) 243-254.[80] V. Havelsky, Energetic efficiency of cogeneration system for combined heat, cold and power production, Int. J. Refrig. 22(1999) 479-485.[81] F. Ziegler, P. Riesch, A Review with Regard to Energetic Efficiency:Absorption Cycle, Heat Recovery Sist CHP, 13, 1993147-159.[82] R. Boukhanouf, J. Godefroy, S.B. Riffat, M. Worall, Design and optimization of a smallscale tri-generation system, Int. J. Low Carbon Technol. 1(2001) 32-43.[83] D.B. do Espirito Santo, An energy and exergy analysis of a high efficiency engine trigeneration system for a hospital:A case study methodology based on annual energy demand profiles, Energ. Buildings 76(2014) 185-198.[84] G. Angrisani, A. Akisawa, E. Marrasso, C. Roselli, M. Sasso, Performance assessment of cogeneration and trigeneration systems for small scale applications, Energy Convers. Manag. 125(2016) 194-208.[85] W.D. Seider, J.D. Seader, D.R. Lewin, Product & Process Design Principles, Synthesis, Analysis and Evaluation, Ⅱ edition Wiley, New York, 2004.[86] R. Turton, R.C. Bailie, W.B. Whiting, J.A. Shaeiwitz, D. Bhattacharyya, Analysis Synthesis and Design of Chemical Processes, Fourth edition Prentice Hall, 2012.[87] M. Shelar, G.N. Kulkarni, Thermodynamic and economic analysis of diesel engine based trigeneration system for Indian hotel, Sustain. Energy Technol. Assess. 13(2016) 60-67.[88] A. Afshari, L. Friedrich, A proposal to introduce tradable energy savings certificates in the emirate of Abu Dhabi, Renew. Sustain. Energy Rev. 55(2016) 1342-1351.[89] A. Petrella, A. Sapio, Assessing the impact of forward trading, retail liberalization, and white certificates on the Italian wholesale electricity prices, Energy Policy 40(2012) 307-317.[90] A. Alcantara, Energetic and economic evaluation of the dimensioning of cogeneration and trigeneration plant. Available on https://fenix.tecnico.ulisboa.pt/downloadFile/395144977784/resumo.pdf2012. |
[1] | Lanting Ke, Xiaobin Liu, Bingqing Du, Yuanpeng Wang, Yanmei Zheng, Qingbiao Li. Component analysis and risk assessment of biogas slurry from biogas plants [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 182-191. |
[2] | Tongyang Zhang, Guanrun Chu, Junlin Lyu, Yongda Cao, Wentao Xu, Kui Ma, Lei Song, Hairong Yue, Bin Liang. CO2 mineralization of carbide slag for the production of light calcium carbonates [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 86-98. |
[3] | Ran An, Shengxin Chen, Shun Hou, Yuting Zhu, Chunhu Li, Xinbao Zhu, Ruixia Liu, Weizhong An. Simulation and design of a heat-integrated double-effect reactive distillation process for propylene glycol methyl ether production [J]. Chinese Journal of Chemical Engineering, 2022, 52(12): 103-114. |
[4] | Di Meng, Cheng Shao, Li Zhu. Dual-radiation-chamber coordinated overall energy efficiency scheduling solution for ethylene cracking process regarding multi-parameter setting and multi-flow allocation [J]. Chinese Journal of Chemical Engineering, 2021, 34(6): 180-197. |
[5] | Xincheng Gu, Xiaochun Zhang, Xiangping Zhang, Chun Deng. Simulation and assessment of manufacturing ethylene carbonate from ethylene oxide in multiple process routes [J]. Chinese Journal of Chemical Engineering, 2021, 29(3): 135-144. |
[6] | Rashid Mustafa Korai, Xiujin Li. Effect of ultrasonic assisted KOH pretreatment on physiochemical characteristic and anaerobic digestion performance of wheat straw [J]. Chinese Journal of Chemical Engineering, 2020, 28(9): 2409-2416. |
[7] | Huangang Shi, Qianjun Li, Wenyi Tan, Hao Qiu, Chao Su. Solid oxide fuel cells in combination with biomass gasification for electric power generation [J]. Chinese Journal of Chemical Engineering, 2020, 28(4): 1156-1161. |
[8] | Lan Li, Xiaoting Huang, Quanda Jiang, Luyue Xia, Jiawei Wang, Ning Ai. New process development and process evaluation for capturing CO2 in flue gas from power plants using ionic liquid [emim][Tf2N] [J]. Chinese Journal of Chemical Engineering, 2020, 28(3): 721-732. |
[9] | Xutao Hu, Hao Qin, Biao Hu, Hongye Cheng, Lifang Chen, Zhiwen Qi. A rate-based method for dynamic analysis and optimal design of reactive extraction: n-Hexyl acetate esterification as an example [J]. Chinese Journal of Chemical Engineering, 2020, 28(1): 76-83. |
[10] | Xiaoyu Zuo, Hairong Yuan, Akiber Chufo Wachemo, Xitong Wang, Liang Zhang, Juan Li, Hongliang Wen, Jiaxi Wang, Xiujin Li. The relationships among sCOD, VFAs, microbial community, and biogas production during anaerobic digestion of rice straw pretreated with ammonia [J]. Chinese Journal of Chemical Engineering, 2020, 28(1): 286-292. |
[11] | Feng Wang, Yanfeng Pu, Jinhai Yang, Taiying Wang, Languang Chen, Ning Zhao, Fukui Xiao. Process design and economic optimization for the indirect synthesis of dimethyl carbonate from urea and methanol [J]. Chinese Journal of Chemical Engineering, 2019, 27(8): 1879-1887. |
[12] | Zheng Wang, Cheng Shao, Li Zhu. Soft-sensing modeling and intelligent optimal control strategy for distillation yield rate of atmospheric distillation oil refining process [J]. Chinese Journal of Chemical Engineering, 2019, 27(5): 1113-1124. |
[13] | Jianqiu Gao, Chun Li, Weizao Liu, Jinpeng Hu, Lin Wang, Qiang Liu, Bin Liang, Hairong Yue, Guoquan Zhang, Dongmei Luo, Siyang Tang. Process simulation and energy integration in the mineral carbonation of blast furnace slag [J]. Chin.J.Chem.Eng., 2019, 27(1): 157-167. |
[14] | Xiuhui Huang, Zeqiu Li, Ying Tian. Process optimization of an industrial acetic acid dehydration progress via heterogeneous azeotropic distillation [J]. Chin.J.Chem.Eng., 2018, 26(8): 1631-1643. |
[15] | Chufu Li. Modeling and optimization of industrial Fischer-Tropsch synthesis with the slurry bubble column reactor and iron-based catalyst [J]. Chin.J.Chem.Eng., 2018, 26(5): 1102-1109. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||