Chinese Journal of Chemical Engineering ›› 2019, Vol. 27 ›› Issue (10): 2390-2396.DOI: 10.1016/j.cjche.2019.01.021
• Separation Science and Engineering • Previous Articles Next Articles
Zheng Li1,2, Xiaoyan Ji2, Zhuhong Yang1, Xiaohua Lu1
Received:
2018-12-27
Revised:
2019-01-21
Online:
2020-01-17
Published:
2019-10-28
Contact:
Xiaohua Lu
Supported by:
Zheng Li1,2, Xiaoyan Ji2, Zhuhong Yang1, Xiaohua Lu1
通讯作者:
Xiaohua Lu
基金资助:
Zheng Li, Xiaoyan Ji, Zhuhong Yang, Xiaohua Lu. Experimental studies of air-blast atomization on the CO2 capture with aqueous alkali solutions[J]. Chinese Journal of Chemical Engineering, 2019, 27(10): 2390-2396.
Zheng Li, Xiaoyan Ji, Zhuhong Yang, Xiaohua Lu. Experimental studies of air-blast atomization on the CO2 capture with aqueous alkali solutions[J]. 中国化学工程学报, 2019, 27(10): 2390-2396.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2019.01.021
[1] E.S. Sanz-Perez, C.R. Murdock, S.A. Didas, C.W. Jones, Direct capture of CO2 from ambient air, Chem. Rev. 116(19) (2016) 11840-11876. [2] A. Alonso, J. Moral-Vico, A. Abo Markeb, M. Busquets-Fite, D. Komilis, V. Puntes, A. Sanchez, X. Font, Critical review of existing nanomaterial adsorbents to capture carbon dioxide and methane, Sci. Total Environ. 595(2017) 51-62. [3] D.J. Heldebrant, P.K. Koech, V.A. Glezakou, R. Rousseau, D. Malhotra, D.C. Cantu, Water-lean solvents for post-combustion CO2 capture:fundamentals, uncertainties, opportunities, and outlook, Chem. Rev. 117(14) (2017) 9594-9624. [4] M. Bui, C.S. Adjiman, A. Bardow, E.J. Anthony, A. Boston, S. Brown, P.S. Fennell, S. Fuss, A. Galindo, L.A. Hackett, J.P. Hallett, H.J. Herzog, G. Jackson, J. Kemper, S. Krevor, G.C. Maitland, M. Matuszewski, I.S. Metcalfe, C. Petit, G. Puxty, J. Reimer, D.M. Reiner, E.S. Rubin, S.A. Scott, N. Shah, B. Smit, J.P.M. Trusler, P. Webley, J. Wilcox, N. Mac Dowell, Carbon capture and storage (CCS):the way forward, Energy Environ. Sci. 11(5) (2018) 1062-1176. [5] I. Sreedhar, T. Nahar, A. Venugopal, B. Srinivas, Carbon capture by absorption-path covered and ahead, Renew. Sust. Energ. Rev. 76(2017) 1080-1107. [6] T. Li, J.E. Sullivan, N.L. Rosi, Design and preparation of a core-shell metal-organic framework for selective CO2 capture, J. Am. Chem. Soc. 135(27) (2013) 9984-9987. [7] P. Nugent, Y. Belmabkhout, S.D. Burd, A.J. Cairns, R. Luebke, K. Forrest, T. Pham, S. Ma, B. Space, L. Wojtas, M. Eddaoudi, M.J. Zaworotko, Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation, Nature 495(7439) (2013) 80-84. [8] M.P.S. Santos, C.A. Grande, A.E. Rodrigues, Dynamic study of the pressure swing adsorption process for biogas upgrading and its responses to feed disturbances, Ind. Eng. Chem. Res. 52(15) (2013) 5445-5454. [9] B. Yuan, X. Wu, Y. Chen, J. Huang, H. Luo, S. Deng, Adsorption of CO2, CH4, and N2 on ordered mesoporous carbon:approach for greenhouse gases capture and biogas upgrading, Environ. Sci. Technol. 47(10) (2013) 5474-5480. [10] E.L. First, M.M.F. Hasan, C.A. Floudas, Discovery of novel zeolites for natural gas purification through combined material screening and process optimization, AIChE J. 60(5) (2014) 1767-1785. [11] S. Krishnamurthy, V.R. Rao, S. Guntuka, P. Sharratt, R. Haghpanah, A. Rajendran, M. Amanullah, I.A. Karimi, S. Farooq, CO2 capture from dry flue gas by vacuum swing adsorption:a pilot plant study, AIChE J. 60(5) (2014) 1830-1842. [12] B. Sasikumar, G. Arthanareeswaran, A.F. Ismail, Recent progress in ionic liquid membranes for gas separation, J. Mol. Liq. 266(2018) 330-341. [13] G.T. Rochelle, Amine scrubbing for CO2 capture, Science 325(5948) (2009) 1652-1654. [14] H. Lepaumier, E.F. da Silva, A. Einbu, A. Grimstvedt, J.N. Knudsen, K. Zahlsen, H.F. Svendsen, Comparison of MEA degradation in pilot-scale with lab-scale experiments, Energy Procedia 4(2011) 1652-1659. [15] Q. Zeng, Y. Guo, Z. Niu, W. Lin, Mass transfer coefficients for CO2 absorption into aqueous ammonia solution using a packed column, Ind. Eng. Chem. Res. 50(17) (2011) 10168-10175. [16] N.S. Kwak, J.H. Lee, I.Y. Lee, K.R. Jang, J.G. Shim, A study of the CO2 capture pilot plant by amine absorption, Energy 47(1) (2012) 41-46. [17] M. Yoo, S.J. Han, J.H. Wee, Carbon dioxide capture capacity of sodium hydroxide aqueous solution, J. Environ. Manag. 114(2013) 512-519. [18] C. Ma, F. Pietrucci, W. Andreoni, Capture and release of CO2 in monoethanolamine aqueous solutions:new insights from First-principles reaction dynamics, J. Chem. Theory Comput. 11(7) (2015) 3189-3198. [19] Y. Du, Y. Yuan, G.T. Rochelle, Volatility of amines for CO2 capture, Int. J. Greenhouse Gas Control 58(2017) 1-9. [20] J.K. Stolaroff, D.W. Keith, G.V. Lowry, Carbon dioxide capture from atmospheric air using sodium hydroxide spray, Environ. Sci. Technol. 42(8) (2008) 8. [21] Q. Zeng, Y. Guo, Z. Niu, W. Lin, The absorption rate of CO2 by aqueous ammonia in a packed column, Fuel Process. Technol. 108(2013) 76-81. [22] I. von Harbou, M. Imle, H. Hasse, Modeling and simulation of reactive absorption of CO2 with MEA:results for four different packings on two different scales, Chem. Eng. Sci. 105(2014) 179-190. [23] J.C. Chen, G.C. Fang, J.T. Tang, L.P. Liu, Removal of carbon dioxide by a spray dryer, Chemosphere 59(1) (2005) 99-105. [24] J. Kuntz, A. Aroonwilas, Performance of spray column for CO2 capture application, Ind. Eng. Chem. Res. 47(2008) 145-153. [25] J. Kuntz, A. Aroonwilas, Mass-transfer efficiency of a spray column for CO2 capture by MEA, Energy Procedia 1(1) (2009) 205-209. [26] Z. Niu, Y. Guo, W. Lin, Carbon dioxide removal efficiencies by fine sprays of MEA, NaOH and aqueous ammonia solutions, J. Tsinghua Univ. (Sci. Technol.) 50(7) (2010) 1130-1134. [27] Q. Zeng, Y. Guo, Z. Niu, Experimental studies on removal capacity of carbon dioxide by a packed reactor and a spray column using aqueous ammonia, Energy Procedia 4(2011) 519-524. [28] S. Ma, B. Zang, H. Song, G. Chen, J. Yang, Research on mass transfer of CO2 absorption using ammonia solution in spray tower, Int. J. Heat Mass Transf. 67(2013) 696-703. [29] K.H. Javed, T. Mahmud, E. Purba, The CO2 capture performance of a high-intensity vortex spray scrubber, Chem. Eng. J. 162(2) (2010) 448-456. [30] W.-H. Chen, Y.-L. Hou, C.-I. Hung, Influence of droplet mutual interaction on carbon dioxide capture process in sprays, Appl. Energy 92(2012) 185-193. [31] L. Kavoshi, M.S. Hatamipour, A. Rahimi, Kinetic modeling of reactive absorption of carbon dioxide in a spray dryer, Chem. Eng. Technol. 36(3) (2013) 500-506. [32] Y. Lim, M. Choi, K. Han, M. Yi, J. Lee, Performance characteristics of CO2 capture using aqueous ammonia in a single-nozzle spray tower, Ind. Eng. Chem. Res. 52(43) (2013) 15131-15137. [33] X. Wu, Y. Yu, Z. Qin, Z. Zhang, Performance of CO2 absorption in a diameter-varying spray tower, Chin. J. Chem. Eng. 25(8) (2017) 1109-1114. [34] A. Mansour, N. Chigier, Air-blast atomization of non-Newtonian liquids, J. NonNewtonian Fluid Mech. 59(1995) 34. [35] A. Urbán, M. Zaremba, M. Malý, V. Józsa, J. Jedelský, Droplet dynamics and size characterization of high-velocity airblast atomization, Int. J. Multiphase Flow 95(2017) 1-11. [36] X. Jiang, G.A. Siamas, K. Jagus, T.G. Karayiannis, Physical modelling and advanced simulations of gas-liquid two-phase jet flows in atomization and sprays, Prog. Energy Combust. Sci. 36(2) (2010) 131-167. [37] X. Li, H. Gao, M.C. Soteriou, Investigation of the impact of high liquid viscosity on jet atomization in crossflow via high-fidelity simulations, Phys. Fluids 29(8) (2017) 082-103. [38] J. Schröder, A. Kleinhans, Y. Serfert, S. Drusch, H.P. Schuchmann, V. Gaukel, Viscosity ratio:a key factor for control of oil drop size distribution in effervescent atomization of oil-in-water emulsions, J. Food Eng. 111(2) (2012) 265-271. [39] T. Müller, A. Sänger, P. Habisreuther, T. Jakobs, D. Trimis, T. Kolb, N. Zarzalis, Simulation of the primary breakup of a high-viscosity liquid jet by a coaxial annular gas flow, Int. J. Multiphase Flow 87(2016) 212-228. [40] J.A. García, A. Lozano, J. Alconchel, E. Calvo, F. Barreras, J.L. Santolaya, Atomization of glycerin with a twin-fluid swirl nozzle, Int. J. Multiphase Flow 92(2017) 150-160. [41] F.S.K. Warnakulasuriya, W.M. Worek, Drop formation of swirl-jet nozzles with high viscous solution in vacuum-new absorbent in spray absorption refrigeration, Int. J. Heat Mass Transf. 51(13-14) (2008) 3362-3368. [42] Z. Li, Y. Wu, H. Yang, C. Cai, H. Zhang, K. Hashiguchi, K. Takeno, J. Lu, Effect of liquid viscosity on atomization in an internal-mixing twin-fluid atomizer, Fuel 103(2013) 486-494. [43] C.E. Ejim, M.A. Rahman, A. Amirfazli, B.A. Fleck, Effects of liquid viscosity and surface tension on atomization in two-phase, gas/liquid fluid coker nozzles, Fuel 89(8) (2010) 1872-1882. [44] R. Hanna, A. Zoughaib, Atomization of high viscosity liquids through hydraulic atomizers designed for water atomization, Exp. Thermal Fluid Sci. 85(2017) 140-153. [45] H. Zhao, H.F. Liu, J.L. Xu, W.F. Li, W. Cheng, Breakup and atomization of a round coal water slurry jet by an annular air jet, Chem. Eng. Sci. 78(2012) 63-74. [46] A. Günther, A. Lampa, U. Fritsching, J. Schröder, A. Kleinhans, V. Gaukel, H.P. Schuchmann, J.-M. Loth, M. Petermann, K.-E. Wirth, Benchmarking of gas-assisted atomization systems for liquid disintegration, Chem. Eng. Technol. 39(4) (2016) 699-707. [47] M. Shafaee, S. Mahmoudzadeh, Numerical investigation of spray characteristics of an air-blast atomizer with dynamic mesh, Aerosp. Sci. Technol. 70(2017) 351-358. [48] J.R. Gabites, J. Abrahamson, J.A. Winchester, Air flow patterns in an industrial milk powder spray dryer, Chem. Eng. Res. Des. 88(7) (2010) 899-910. [49] L.C. Tome, I.M. Marrucho, Ionic liquid-based materials:a platform to design engineered CO2 separation membranes, Chem. Soc. Rev. 45(10) (2016) 2785-2824. [50] K. Huang, F.F. Chen, D.J. Tao, S. Dai, Ionic liquid-formulated hybrid solvents for CO2 capture, Curr. Opin. Green Sustain. Chem. 5(2017) 67-73. [51] F.P. Kinik, A. Uzun, S. Keskin, Ionic liquid/metal-organic framework composites:from synthesis to applications, ChemSusChem 10(14) (2017) 2842-2863. [52] H.A. Patel, J. Byun, C.T. Yavuz, Carbon dioxide capture adsorbents:chemistry and methods, ChemSusChem 10(7) (2017) 1303-1317. [53] D. Shang, X. Liu, L. Bai, S. Zeng, Q. Xu, H. Gao, X. Zhang, Ionic liquids in gas separation processing, Curr. Opin. Green Sustain. Chem. 5(2017) 74-81. [54] S. Zeng, X. Zhang, L. Bai, X. Zhang, H. Wang, J. Wang, D. Bao, M. Li, X. Liu, S. Zhang, Ionic-liquid-based CO2 capture systems:structure, interaction and process, Chem. Rev. 117(14) (2017) 9625-9673. [55] W. Xie, X. Ji, X. Feng, X. Lu, Mass transfer rate enhancement for CO2 separation by ionic liquids:effect of film thickness, Ind. Eng. Chem. Res. 55(1) (2015) 366-372. [56] E. Molnár, D. Rippel-Pethő, G. Horváth, J. Bobek, R. Bocsi, Z. Hodai, Removal of hydrogen sulphide content from biogas by atomizing of alkali solution, Stud. Univ. Babes-Bolyai Chem. 62(3) (2017) 265-272. [57] G. Puxty, R. Rowland, M. Attalla, Comparison of the rate of CO2 absorption into aqueous ammonia and monoethanolamine, Chem. Eng. Sci. 65(2) (2010) 915-922. [58] P. Ryszard, M. Wladyslaw, Kenetic of reaction between carbon dioxide and hydroxyl ions in aqueous electrolyte solutions, Chem. Eng. Sci. 43(7) (1988) I677-1684. [59] A. Aroonwilas, A. Veawab, P. Tontiwachwuthikul, Behavior of the mass-transfer coefficient of structured packings in CO2 absorbers with chemical reactions, Ind. Eng. Chem. Res. 38(1999) 2044-2050. [60] A. Davanlou, J.D. Lee, S. Basu, R. Kumar, Effect of viscosity and surface tension on breakup and coalescence of bicomponent sprays, Chem. Eng. Sci. 131(2015) 243-255. [61] A. Bandyopadhyay, M.N. Biswas, CO2 capture in a spray column using a critical flow atomizer, Sep. Purif. Technol. 94(2012) 104-114. [62] Y. Tamhankar, B. King, J. Whiteley, T. Cai, K. McCarley, M. Resetarits, C. Aichele, Spray absorption of CO2 into monoethanolamine:mass transfer coefficients, dropsize, and planar surface area, Chem. Eng. Res. Des. 104(2015) 376-389. [63] A. Aroonwilas, P. Tontiwachwuthikul, A. Chakma, Effects of operating and design parameters on CO2 absorption in columns with structured packings, Sep. Purif. Technol. 24(2001) 403-411. [64] Y. Liu, H. Li, G. Wei, H. Zhang, X. Li, Y. Jia, Mass transfer performance of CO2 absorption by alkanolamine aqueous solution for biogas purification, Sep. Purif. Technol. 133(2014) 476-483. [65] H.N. Abdul Halim, A. M. Shariff, L.S. Tan, M.A. Bustam, Mass transfer performance of CO2 absorption from natural gas using monoethanolamine (MEA) in high pressure operations, Ind. Eng. Chem. Res. 54(5) (2015) 1675-1680. |
[1] | Jian Wang, Yuanhui Shen, Donghui Zhang, Zhongli Tang, Wenbin Li. Integrated vacuum pressure swing adsorption and Rectisol process for CO2 capture from underground coal gasification syngas [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 265-279. |
[2] | Xingzhong Li, Kunlin Yu, Zibo He, Bo Liu, Rongfei Zhou, Weihong Xing. Improved SSZ-13 thin membranes fabricated by seeded-gel approach for efficient CO2 capture [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 273-280. |
[3] | Zhong Ma, Guofu Liu, Hui Zhang, Yonggang Lu. Investigation of the redox performance of pyrite cinder calcined at different temperature in chemical looping combustion [J]. Chinese Journal of Chemical Engineering, 2022, 48(8): 98-105. |
[4] | Ding-Ming Xue, Wen-Juan Zhang, Xiao-Qin Liu, Shi-Chao Qi, Lin-Bing Sun. Fabrication of azobenzene-functionalized porous polymers for selective CO2 capture [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 24-30. |
[5] | Xiaobin Chen, Yuting Tang, Chuncheng Ke, Chaoyue Zhang, Sichun Ding, Xiaoqian Ma. CO2 capture by double metal modified CaO-based sorbents from pyrolysis gases [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 40-49. |
[6] | Wanqiao Liang, Jihuan Huang, Penny Xiao, Ranjeet Singh, Jining Guo, Leila Dehdari, Gang Kevin Li. Amine-immobilized HY zeolite for CO2 capture from hot flue gas [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 335-342. |
[7] | Xiuxin Yu, Bing Liu, Yuanhui Shen, Donghui Zhang. Design and experiment of high-productivity two-stage vacuum pressure swing adsorption process for carbon capturing from dry flue gas [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 378-391. |
[8] | Xionghui Liu, Jianfeng Du, Yu Ye, Yuchuan Liu, Shun Wang, Xianyu Meng, Xiaowei Song, Zhiqiang Liang, Wenfu Yan. Boosting selective C2H2/CH4, C2H4/CH4 and CO2/CH4 adsorption performance via 1,2,3-triazole functionalized triazine-based porous organic polymers [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 64-72. |
[9] | Jiajia Wang, Lizhi Wang, You Wang, Du Zhang, Qin Xiao, Jianhan Huang, You-Nian Liu. Recent progress in porous organic polymers and their application for CO2 capture [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 91-103. |
[10] | Peng Tan, Yao Jiang, Qiurong Wu, Chen Gu, Shichao Qi, Qiang Zhang, Xiaoqin Liu, Linbing Sun. Light-responsive adsorbents with tunable adsorbent-adsorbate interactions for selective CO2 capture [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 104-111. |
[11] | Baowen Wang, Zhongyuan Cai, Heyu Li, Yanchen Liang, Tao Jiang, Ning Ding, Haibo Zhao. Reaction characteristics investigation of CeO2-enhanced CaSO4 oxygen carrier with lignite [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 319-328. |
[12] | Tao Jiang, Fei Xiao, Yujun Zhao, Shengping Wang, Xinbin Ma. High-temperature CO2 sorbents with citrate and stearate intercalated Ca—Al hydrotalcite-like as precursor [J]. Chinese Journal of Chemical Engineering, 2022, 50(10): 177-184. |
[13] | Yu Dong, Tiantian Ping, Shufeng Shen. Solubility of CO2 in nonaqueous system of 2-(butylamino)ethanol with 2-butoxyethanol: Experimental data and model representation [J]. Chinese Journal of Chemical Engineering, 2022, 41(1): 441-448. |
[14] | Wan Zhang, Yingjie Li, Yuqi Qian, Boyu Li, Jianli Zhao, Zeyan Wang. NO removal performance of CO in carbonation stage of calcium looping for CO2 capture [J]. Chinese Journal of Chemical Engineering, 2021, 37(9): 30-38. |
[15] | Cao Kuang, Shuzhong Wang, Ming Luo, Jun Zhao. Reactivity study and kinetic evaluation of CuO-based oxygen carriers modified by three different ores in chemical looping with oxygen uncoupling (CLOU) process [J]. Chinese Journal of Chemical Engineering, 2021, 37(9): 54-63. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||