[1] S. Lain, D. Bröder, M. Sommerfeld, Experimental and numerical studies of the hydrodynamics in a bubble column, Chem. Eng. Sci. 54(1999) 4913-4920. [2] S. Degaleesan, M. Dudukovic, Y. Pan, Experimental study of gas-induced liquid-flow structures in bubble columns, AIChE J. 47(2001) 1913-1931. [3] Z. Liu, Y. Zheng, L. Jia, Q. Zhang, Study of bubble induced flow structure using PIV, Chem. Eng. Sci. 60(2005) 3537-3552. [4] S.S. Rabha, V.V. Buwa, Experimental investigations of rise behavior of monodispersed/polydispersed bubbly flows in quiescent liquids, Ind. Eng. Chem. Res. 49(2010) 10615-10626. [5] D.G. Karamanev, Rise of gas bubbles in quiescent liquids, AIChE J. 40(1994) 1418-1421. [6] E. Delnoij, J.A.M. Kuipers, W.P.M. van Swaaij, Computational fluid dynamics applied to gas-liquid contactors, Chem. Eng. Sci. 52(1997) 3623-3638. [7] E. Olmos, C. Gentric, C. Vial, G. Wild, N. Midoux, Numerical simulation of multiphase flow in bubble column reactors. Influence of bubble coalescence and break-up, Chem. Eng. Sci. 56(2001) 6359-6365. [8] J.M. van Baten, R. Krishna, CFD simulations of a bubble column operating in the homogeneous and heterogeneous flow regimes, Chem. Eng. Technol. 25(2002) 1081-1086. [9] M. Liu, Z. Hu, Studies on the hydrodynamics of chaotic bubbling in a gas-liquid bubble column with a single nozzle, Chem. Eng. Technol. 27(2004) 537-547. [10] N. Yang, J. Chen, H. Zhao, W. Ge, J. Li, Explorations on the multi-scale flow structure and stability condition in bubble columns, Chem. Eng. Sci. 62(2007) 6978-6991. [11] N. Yang, J. Chen, W. Ge, J. Li, A conceptual model for analyzing the stability condition and regime transition in bubble columns, Chem. Eng. Sci. 65(2010) 517-526. [12] N. Yang, Z. Wu, J. Chen, Y. Wang, J. Li, Multi-scale analysis of gas-liquid interaction and CFD simulation of gas-liquid flow in bubble columns, Chem. Eng. Sci. 66(2011) 3212-3222. [13] A. Sokolichin, G. Eigenberger, A. Lapin, Simulation of buoyancy driven bubbly flow:Established simplifications and open questions, AIChE J. 50(2004) 24-45. [14] Q. Liu, X.-F. Liang, X.-J. Luo, Z.-H. Luo, A PBM-CFD model with optimized PBMcustomized drag equations for chemisorption of CO2 in a bubble column, Int. J. Chem. React. Eng. 16(2018). [15] X. Zhang, G. Ahmadi, Eulerian-Lagrangian simulations of liquid-gas-solid flows in three-phase slurry reactors, Chem. Eng. Sci. 60(2005) 5089-5104. [16] C. Chen, L.-S. Fan, Discrete simulation of gas-liquid bubble columns and gas-liquidsolid fluidized beds, AIChE J. 50(2004) 288-301. [17] Y. Li, J. Zhang, L.-S. Fan, Discrete-phase simulation of single bubble rise behavior at elevated pressures in a bubble column, Chem. Eng. Sci. 55(2000) 4597-4609. [18] Q. Liu, Z.-H. Luo, CFD-VOF-DPM simulations of bubble rising and coalescence in low hold-up particle-liquid suspension systems, Powder Technol. 339(2018) 459-469. [19] Y. Xu, M. Liu, C. Tang, Three-dimensional CFD-VOF-DPM simulations of effects of low-holdup particles on single-nozzle bubbling behavior in gas-liquid-solid systems, Chem. Eng. J. 222(2013) 292-306. [20] M. van Sint Annaland, N.G. Deen, J.A.M. Kuipers, Numerical simulation of gas bubbles behaviour using a three-dimensional volume of fluid method, Chem. Eng. Sci. 60(2005) 2999-3011. [21] M. van Sint Annaland, N.G. Deen, J.A.M. Kuipers, Numerical simulation of gas-liquid-solid flows using a combined front tracking and discrete particle method, Chem. Eng. Sci. 60(2005) 6188-6198. [22] C.W. Hirt, B.D. Nichols, Volume of fluid (VOF) method for the dynamics of free boundaries, J. Comput. Phys. 39(1981) 201-225. [23] A. Tomiyama, I. Zun, A. Sou, T. Sakaguchi, Numerical analysis of bubble motion with the VOF method, Nucl. Eng. Des. 141(1993) 69-82. [24] S.S. Rabha, V.V. Buwa, Volume-of-fluid (VOF) simulations of rise of single/multiple bubbles in sheared liquids, Chem. Eng. Sci. 65(2010) 527-537. [25] D. Ma, M. Liu, Y. Zu, C. Tang, Two-dimensional volume of fluid simulation studies on single bubble formation and dynamics in bubble columns, Chem. Eng. Sci. 72(2012) 61-77. [26] Y.J. Zhang, M.Y. Liu, Y.G. Xu, C. Tang, Three-dimensional volume of fluid simulations on bubble formation and dynamics in bubble columns, Chem. Eng. Sci. 73(2012) 55-78. [27] R. Krishna, J.M. van Baten, Rise characteristics of gas bubbles in a 2D rectangular column:VOF simulations vs experiments, Int. Commun. Heat Mass Transf. 26(1999) 965-974. [28] M.A. Akhtar, M. Tadé, V. Pareek, Simulations of bubble column reactors using a volume of fluid approach:Effect of air distributor, Can. J. Chem. Eng. 85(2007) 290-301. [29] K. Sankaranarayanan, S. Sundaresan, Lift force in bubbly suspensions, Chem. Eng. Sci. 57(2002) 3521-3542. [30] P. Chen, J. Sanyal, M.P. Duduković, Numerical simulation of bubble columns flows:Effect of different breakup and coalescence closures, Chem. Eng. Sci. 60(2005) 1085-1101. [31] W. Dijkhuizen, E.I.V. van den Hengel, N.G. Deen, M. van Sint Annaland, J.A.M. Kuipers, Numerical investigation of closures for interface forces acting on single air-bubbles in water using volume of fluid and front tracking models, Chem. Eng. Sci. 60(2005) 6169-6175. [32] W. Dijkhuizen, M. van Sint Annaland, J.A.M. Kuipers, Numerical and experimental investigation of the lift force on single bubbles, Chem. Eng. Sci. 65(2010) 1274-1287. [33] N.G. Deen, T. Solberg, B.H. Hjertager, Large eddy simulation of the gas-liquid flow in a square cross-sectioned bubble column, Chem. Eng. Sci. 56(2001) 6341-6349. [34] B.G.M. van Wachem, A.E. Almstedt, Methods for multiphase computational fluid dynamics, Chem. Eng. J. 96(2003) 81-98. [35] F. Bertola, G. Baldi, D. Marchisio, M. Vanni, Momentum transfer in a swarm of bubbles:Estimates from fluid-dynamic simulations, Chem. Eng. Sci. 59(2004) 5209-5215. [36] G.M. Cartland Glover, S.C. Generalis, The modelling of buoyancy driven flow in bubble columns, Chem. Eng. Process. Process Intensif. 43(2004) 101-115. [37] W. Dijkhuizen, I. Roghair, M. Van Sint Annaland, J.A.M. Kuipers, DNS of gas bubbles behaviour using an improved 3D front tracking model-Drag force on isolated bubbles and comparison with experiments, Chem. Eng. Sci. 65(2010) 1415-1426. [38] J.U. Brackbill, D.B. Kothe, C. Zemach, A continuum method for modeling surface tension, J. Comput. Phys. 100(1992) 335-354. |