Chin.J.Chem.Eng. ›› 2019, Vol. 27 ›› Issue (2): 257-277.DOI: 10.1016/j.cjche.2018.11.011
• Fluid Dynamics and Transport Phenomena • Previous Articles Next Articles
Jörn Emmerich1,2, Qiao Tang3, Yundong Wang3, Peter Neubauer1, Stefan Junne1, Sebastian Maaß2
Received:
2017-12-05
Revised:
2018-10-29
Online:
2019-03-18
Published:
2019-02-28
Contact:
Sebastian Maaß
Jörn Emmerich1,2, Qiao Tang3, Yundong Wang3, Peter Neubauer1, Stefan Junne1, Sebastian Maaß2
通讯作者:
Sebastian Maaß
Jörn Emmerich, Qiao Tang, Yundong Wang, Peter Neubauer, Stefan Junne, Sebastian Maaß. Optical inline analysis and monitoring of particle size and shape distributions for multiple applications: Scientific and industrial relevance[J]. Chin.J.Chem.Eng., 2019, 27(2): 257-277.
Jörn Emmerich, Qiao Tang, Yundong Wang, Peter Neubauer, Stefan Junne, Sebastian Maaß. Optical inline analysis and monitoring of particle size and shape distributions for multiple applications: Scientific and industrial relevance[J]. Chinese Journal of Chemical Engineering, 2019, 27(2): 257-277.
[1] E. Frauendorfer, A. Wolf, W.D. Hergeth, Polymerization online monitoring, Chem. Eng. Technol. 33(11) (2010) 1767-1778. [2] B. Hu, P. Angeli, O.K. Matar, C.J. Lawrence, G.F. Hewitt, Evaluation of drop size distribution from chord length measurements, AIChE J. 52(3) (2006) 931-939. [3] S. Maab, S. Wollny, A. Voigt, M. Kraume, Experimental comparison of measurement techniques for drop size distributions in liquid/liquid dispersions, Exp. Fluids 50(2) (2011) 259-269. [4] A.W. Pacek, I.P.T. Moore, A.W. Nienow, R.V. Calabrese, Video technique for measuring dynamics of liquid-liquid dispersion during phase inversion, AIChE J. 40(12) (1994) 1940-1949. [5] A.W. Pacek, A.W. Nienow, Measurement of drop size distribution in concentrated liquid-liquid dispersions-Video and capillary techniques, Chem. Eng. Res. Des. 73(A5) (1995) 512-518. [6] R.P. Panckow, L. Reinecke, M.C. Cuellar, S. Maab, Photo-optical in-situ measurement of drop size distributions:Applications in research and industry, Oil Gas Sci. Technol. Rev. IFP Energies Nouv. 72(3) (2017) 14. [7] J. Heinrich, J. Ulrich, Application of laser-backscattering instruments for in situ monitoring of crystallization processes-A review, Chem. Eng. Technol. 35(6) (2012) 967-979. [8] O. Gnotke, Experimentelle und theoretische Untersuchungen zur Bestimmung von veranderlichen Blasengroben und Blasengrobenverteilungen in turbulenten Gas-Flussigkeits-Stromungen, Vol. phd TU Darmstadt, 2004. [9] H.G. Merkus, Particle Size Measurements-Fundamentals, Practice, Quality, vol. 1, Springer Netherlands, 2009534. [10] S. Wollny, Experimentelle und numerische Untersuchungen zur Partikelbeanspruchung in geruhrten (Bio-)Reaktoren, Technische Universitat Berlin, Kothen, 2010177. [11] B. Junker, Measurement of bubble and pellet size distributions:Past and current image analysis technology, Bioprocess Biosyst. Eng. 29(3) (2006) 185-206. [12] T.G. Leighton, K. Baik, J. Jiang, The use of acoustic inversion to estimate the bubble size distribution in pipelines, Proc. R. Soc. Lond. A 468(2145) (2012) 2461-2484. [13] P.H. Calderbank, Physical rate processes in industrial fermentation. Part I:The interfacial area in gas-liquid contacting with mechanical agitation, Trans. Inst. Chem. Eng. (36) (1958) 443-463. [14] G. Montante, D. Horn, A. Paglianti, Gas-liquid flow and bubble size distribution in stirred tanks, Chem. Eng. Sci. 63(8) (2008) 2107-2118. [15] M. Barigou, M. Greaves, Bubble size distributions in a mechanically agitated gas-liquid contactor, Chem. Eng. Sci. 47(8) (1992) 2009-2025. [16] M. Laakkonen, M. Honkanen, P. Saarenrinne, J. Aittamaa, Local bubble size distributions, gas/liquid interfacial areas and gas holdups in a stirred vessel with particle image velocimetry, Chem. Eng. J. 109(1-3) (2005) 37-47. [17] H. Braeske, G. Brenn, J. Domnick, F. Durst, A. Melling, M. Ziema, Extended phaseDoppler anemometry for measurements in three-phase flows, Chem. Eng. Technol. 21(5) (1998) 415-420. [18] A.L. Tassin, D.E. Nikitopoulos, Non-intrusive measurements of bubble size and velocity, Exp. Fluids 19(2) (1995) 121-132. [19] M. Barigou, M. Greaves, A capillary suction prove for bubble size measurement, Meas. Sci. Technol. 2(4) (1991) 318. [20] V. Ilchenko, R. Maurus, T. Sattelmayer, Influence of the operating conditions on the bubble characteristics in an aerated stirred vessel, in:M. Sommerfeld (Ed.), Bubbly Flows:Analysis, Modelling and Calculation, Springer Berlin Heidelberg, Berlin, Heidelberg 2004, pp. 307-318. [21] D. Petrak, Simultaneous measurement of particle size and particle velocity by the spatial filtering technique, Part. Part. Syst. Charact. 19(6) (2002) 391-400. [22] M. Schluter, Local measurement techniques for multiphase flows, Chem. Ing. Tech. 83(7) (2011) 992-1004(in German). [23] C. Heffels, R. Polke, M. Radle, B. Sachweh, M. Schafer, N. Scholz, Control of particulate processes by optical measurement techniques, Part. Part. Syst. Charact. 15(5) (1998) 211-218. [24] A. Ruf, J. Worlitschek, M. Mazzotti, Modeling and experimental analysis of PSD measurements through FBRM, Part. Part. Syst. Charact. 17(4) (2000) 167-179. [25] B. Sachweh, C. Heffels, R. Polke, M. Radle, Light scattering sensor for in-line measurements of mean particle sizes in suspensions, 7th European Symposium on Particle Characterization, PARTEC, Nuremberg 1998, p. 98. [26] O.S. Agimelen, A. Jawor-Baczynska, J. McGinty, J. Dziewierz, C. Tachtatzis, A. Cleary, I. Haley, C. Michie, I. Andonovic, J. Sefcik, A.J. Mulholland, Integration of in situ imaging and chord length distribution measurements for estimation of particle size and shape, Chem. Eng. Sci. 144(Supplement C) (2016) 87-100. [27] R.P. Panckow, G. Comande, S. Maab, M. Kraume, Determination of particle size distributions in multiphase systems containing nonspherical fluid particles, Chem. Eng. Technol. 38(11) (2015) 2011-2016. [28] A.W. Pacek, C.C. Man, A.W. Nienow, On the Sauter mean diameter and size distributions in turbulent liquid/liquid dispersions in a stirred vessel, Chem. Eng. Sci. 53(11) (1998) 2005-2011. [29] T. Pilhofer, H.D. Miller, Photoelectric method of measuring size distribution of moderately dispersed drops in an immiscible binary liquid system, Chem. Ing. Tech. 44(5) (1972) 295-300. [30] A.W. Nienow, Break-up, coalescence and catastrophic phase inversion in turbulent contactors, Adv. Colloid Interf. Sci. 108(2004) 95-103. [31] F.B. Alban, S. Sajjadi, M. Yianneskis, Dynamic tracking of fast liquid-liquid dispersion processes with a real-time in-situ optical technique, Chem. Eng. Res. Des. 82(A8) (2004) 1054-1060. [32] G. Wang, X. Li, C. Yang, G. Li, Z.-S. Mao, New vision probe based on telecentric photography and its demonstrative applications in a multiphase stirred reactor, Ind. Eng. Chem. Res. 56(23) (2017) 6608-6617. [33] Y. Xiao, X. Li, C. Yang, J. Shen, Z.-S. Mao, Particle scattering photography approach for poorly illuminated multiphase reactors. Ⅱ:experimental validation and optimization, Ind. Eng. Chem. Res. 57(25) (2018) 8405-8412. [34] J.A. Boxall, C.A. Koh, E.D. Sloan, A.K. Sum, D.T. Wu, Measurement and calibration of droplet size distributions in water-in-oil emulsions by particle video microscope and a focused beam reflectance method, Ind. Eng. Chem. Res. 49(3) (2010) 1412-1418. [35] J. Lovick, A.A. Mouza, S.V. Paras, G.J. Lye, P. Angeli, Drop size distribution in highly concentrated liquid-liquid dispersions using a light back scattering method, J. Chem. Technol. Biotechnol. 80(5) (2005) 545-552. [36] F. Folttmann, K. Knop, P. Kleinebudde, M. Pein, In-line spatial filtering velocimetry for particle size and film thickness determination in fluidized-bed pellet coating processes, Eur. J. Pharm. Biopharm. 88(3) (2014) 931-938. [37] E.K. Todtenhaupt, Blasengrobenverteilung in technischen Begasungsapparaten, Chem. Ing. Tech. 43(6) (1971) 336-342. [38] S.S. Alves, C.I. Maia, J.M.T. Vasconcelos, A.J. Serralheiro, Bubble size in aerated stirred tanks, Chem. Eng. J. 89(1-3) (2002) 109-117. [39] F. Mayinger, O. Feldmann, Bubble dispersion in aerated stirred vessels, in:M. Sommerfeld (Ed.), Bubbly Flows:Analysis, Modelling and Calculation, Springer Berlin Heidelberg, Berlin, Heidelberg 2004, pp. 319-335. [40] D. Marquard, A. Enders, G. Roth, U. Rinas, T. Scheper, P. Lindner, In situ microscopy for online monitoring of cell concentration in Pichia pastoris cultivations, J. Biotechnol. 234(2016) 90-98. [41] A. Lemoine, F. Delvigne, A. Bockisch, P. Neubauer, S. Junne, Tools for the determination of population heterogeneity caused by inhomogeneous cultivation conditions, J. Biotechnol. 251(2017) 84-93. [42] A. Bluma, T. Hopfner, P. Lindner, C. Rehbock, S. Beutel, D. Riechers, B. Hitzmann, T. Scheper, In-situ imaging sensors for bioprocess monitoring:State of the art, Anal. Bioanal. Chem. 398(6) (2010) 2429-2438. [43] P. Wiedemann, J.S. Guez, H.B. Wiegemann, F. Egner, J.C. Quintana, D. AsanzaMaldonado, M. Filipaki, J. Wilkesman, C. Schwiebert, J.P. Cassar, In situ microscopic cytometry enables noninvasive viability assessment of animal cells by measuring entropy states, Biotechnol. Bioeng. 108(12) (2011) 2884-2893. [44] V. Camisard, J. Brienne, H. Baussart, J. Hammann, H. Suhr, Inline characterization of cell concentration and cell volume in agitated bioreactors using in situ microscopy:Application to volume variation induced by osmotic stress, Biotechnol. Bioeng. 78(1) (2002) 73-80. [45] D. Marquard, C. Schneider-Barthold, S. Dusterloh, T. Scheper, P. Lindner, Online monitoring of cell concentration in high cell density Escherichia coli cultivations using in situ microscopy, J. Biotechnol. 259(2017) 83-85. [46] V.L. Belini, P. Wiedemann, H. Suhr, In situ microscopy:A perspective for industrial bioethanol production monitoring, J. Microbiol. Methods 93(3) (2013) 224-232. [47] H. Suhr, A.M. Herkommer, In situ microscopy using adjustment-free optics, J. Biomed. Opt. 20(11) (2015), 116007. [48] S. Bonk, M. Sandor, F. Rudinger, B. Tscheschke, A. Prediger, A. Babitzky, D. Solle, S. Beutel, T. Scheper, In-situ microscopy and 2D fluorescence spectroscopy as online methods for monitoring CHO cells during cultivation, BMC Proc. 5(Suppl. 8) (2011) P76. [49] J.S. Guez, J.P. Cassar, F. Wartelle, P. Dhulster, H. Suhr, Real time in situ microscopy for animal cell-concentration monitoring during high density culture in bioreactor, J. Biotechnol. 111(3) (2004) 335-343. [50] P. Wiedemann, M. Worf, H.B. Wiegemann, F. Egner, C. Schwiebert, J. Wilkesman, J.S. Guez, J.C. Quintana, D. Assanza, H. Suhr, On-line and real time cell counting and viability determination for animal cell process monitoring by in situ microscopy, BMC proceedings, BioMed Central Ltd., 2011 [51] S. Sato, A. Rancourt, Y. Sato, M.S. Satoh, Single-cell lineage tracking analysis reveals that an established cell line comprises putative cancer stem cells and their heterogeneous progeny, Sci. Rep. 6(2016) 23328. [52] A. Saadatpour, S. Lai, G. Guo, G.-C. Yuan, Single-cell analysis in cancer genomics, Trends Genet. 31(10) (2015) 576-586. [53] Z. Liu, Luke D. Lavis, E. Betzig, Imaging live-cell dynamics and structure at the singlemolecule level, Mol. Cell 58(4) (2015) 644-659. [54] A. Ettinger, T. Wittmann, Chapter 5-Fluorescence live cell imaging, in:J.C. Waters, T. Wittman (Eds.), Methods in Cell Biology, Academic Press 2014, pp. 77-94. [55] C. Brasko, K. Smith, C. Molnar, N. Farago, L. Hegedus, A. Balind, T. Balassa, A. Szkalisity, F. Sukosd, K. Kocsis, B. Balint, L. Paavolainen, M.Z. Enyedi, I. Nagy, L.G. Puskas, L. Haracska, G. Tamas, P. Horvath, Intelligent image-based in situ singlecell isolation, Nat. Commun. 9(1) (2018) 226. [56] H. Aakre, T. Solbakken, R.B. Schuller, Online measurement of droplet characteristics in a flowing crude oil/water system using an endoscope and a CCD-NIR camera, 3rd International Symposium on Two-Phase Flow Modelling and Experimentation, ENEA Casaccia, Institute of Thermal-Fluid Dynamics, University of Pisa, Pisa, 2004. [57] A. Pankewitz, C. Behrens, In-line Crystal size analysis with a highly adaptable and industrially approved sensor based ultrasonic Extinction, 15th International Symposium on Industrial Crystallization, Sympatec GmbH, Sorento, Italy, 2002. [58] G. Zhou, A. Moment, J. Cuff, W. Schafer, C. Orella, E. Sirota, X. Gong, C. Welch, Process development and control with recent new FBRM, PVM, and IR, Org. Process. Res. Dev. 19(1) (2015) 227-235. [59] S.T. Schorsch, Imaging systems, analysis protocols, and modelling tools for particle shape monitoring for crystallization, PhD Thesis, Friedrich Alexander University Erlangen, Germany, 1984. [60] A. Amokrane, S. Maab, F. Lamadie, F. Puel, S. Charton, On droplets size distribution in a pulsed column. Part I:In-situ measurements and corresponding CFD-PBE simulations, Chem. Eng. J. 296(Supplement C) (2016) 366-376. [61] S.T. Schorsch, Imaging Systems, Analysis Protocols, and Modelling Tools for Particle Shape Monitoring for Crystallization, (Chemical and Biological Engineering, Friedrich Alexander University Erlangen. Vol. phd) ETH Zurich, Zurich, 2014. [62] C. Demant, B. Streicher-Abel, Inustrielle Bildverarbeitung, 2011. [63] I. Group, ISO/Guide 35:2017(en)-Reference materials-Guidance for characterization and assessment of homogeneity and stability,[cited 201819.04.]; Available from:https://www.iso.org/obp/ui/#iso:std:iso:guide:35:ed-4:v1:en 2018. [64] K.R. Castleman, The Image Processing Handbook, second edition. By John C Russ, Bioimaging, vol. 3(3), 1995145-146. [65] J. Ilonen, R. Juranek, T. Eerola, L. Lensu, M. Dubska, P. Zemcik, H. Kalviainen, Comparison of bubble detectors and size distribution estimators, Pattern Recogn. Lett. 101(2018) 60-66. [66] N. Strokina, J. Matas, T. Eerola, L. Lensu, H. Kalviainen, Detection of bubbles as concentric circular arrangements, Mach. Vis. Appl. 27(3) (2016) 387-396. [67] L.M.R. Bras, E.F. Gomes, M.M.M. Ribeiro, M.M.L. Guimaraes, Drop distribution determination in a liquid-liquid dispersion by image processing, Int. J. Chem. Eng. (2009), 746439. https://doi.org/10.1155/2009/746439(pp. 6). [68] S. Maab, J. Rojahn, R. Hansch, M. Kraume, Automated drop detection using image analysis for online particle size monitoring in multiphase systems, Comput. Chem. Eng. 45(2012) 27-37. [69] A. Buffo, V. Alopaeus, Experimental determination of size distributions:Analyzing proper sample sizes, Meas. Sci. Technol. 27(4) (2016), 045301. [70] J. Ritter, M. Kraume, On-line measurement technique for drop size distributions in liquid/liquid systems at high dispersed phase fractions, Chem. Eng. Technol. 23(7) (2000) 579-582. [71] A. Rojas-Dominguez, A. Holguin-Salas, E. Galindo, G. Corkidi, Gradient-directionpattern transform for automated measurement of oil drops in images of multiphase dispersions, Chem. Eng. Technol. 38(2) (2015) 327-335. [72] R. Gopalan, D. Jacobs, Comparing and combining lighting insensitive approaches for face recognition, Comput. Vis. Image Underst. 114(1) (2010) 135-145. [73] R. Kacker, S. Maab, J. Emmerich, H. Kramer, Application of inline imaging for monitoring crystallization process in a continuous oscillatory baffled crystallizer, AIChE J. 64(7) (2018),https://doi.org/10.1002/aic.16145. [74] A. Soare, S.A. Perez Escobar, A.I. Stankiewicz, M. Rodriguez Pascual, H.J.M. Kramer, 2-D flow and temperature measurements in a multiphase airlift crystallizer, Ind. Eng. Chem. Res. 52(34) (2013) 12212-12222. [75] S. Maab, N. Paul, M. Kraume, Influence of the dispersed phase fraction on experimental and predicted drop size distributions in breakage dominated stirred liquid-liquid systems, Chem. Eng. Sci. 76(2012) 140-153. [76] V. Alopaeus, J. Koskinen, K. I. Keskinen, J. Majander, Simulation of the population balances for liquid-liquid systems in a nonideal stirred tank. Part 2-Parameter fitting and the use of the multiblock model for dense dispersions, Chem. Eng. Sci. 57(10) (2002) 1815-1825. [77] J.N. Sangshetti, M. Deshpande, Z. Zaheer, D.B. Shinde, R. Arote, Quality by design approach:Regulatory need, Arab. J. Chem. 10(Supplement 2) (2017) S3412-S3425. [78] D. Sarkar, X.-T. Doan, Z. Ying, R. Srinivasan, In situ particle size estimation for crystallization processes by multivariate image analysis, Chem. Eng. Sci. 64(1) (2009) 9-19. [79] A.-M. Marba-Ardebol, J. Emmerich, P. Neubauer, S. Junne, Single-cell-based monitoring of fatty acid accumulation in Crypthecodinium cohnii with three-dimensional holographic and in situ microscopy, Process Biochem. 52(Supplement C) (2017) 223-232. [80] A.-M. Marba-Ardebol, J. Emmerich, M. Muthig, P. Neubauer, S. Junne, Real-time monitoring of the budding index in Saccharomyces cerevisiae batch cultivations with in situ microscopy, Microb. Cell Factories (2018) 34,https://doi.org/10.1002/mren.201700015. [81] J. Cocke, S. Maab, Cross linking between the baffling effect and phase inversion during liquid-liquid monomer mixing, Macromol. React. Eng. 11(4) (2017) (p. 1700015-n/a). [82] T.H. Ngo, A. Schumpe, Oxygen absorption into stirred emulsions of n-alkanes, Int. J. Chem. Eng. 2012(2012) 7. [83] L. Schilder, S. Maab, A. Jess, Effective and intrinsic kinetics of liquid-phase isobutane/2-butene alkylation catalyzed by chloroaluminate ionic liquids, Ind. Eng. Chem. Res. 52(5) (2013) 1877-1885. [84] E. Aksamija, C. Weinlander, R. Sarzio, M. Siebenhofer, The Taylor-Couette disc contactor:A novel apparatus for liquid/liquid extraction, Sep. Sci. Technol. 50(18) (2015) 2844-2852. [85] A.S. Heeres, K. Schroen, J.J. Heijnen, L.A.M. van der Wielen, M.C. Cuellar, Fermentation broth components influence droplet coalescence and hinder advanced biofuel recovery during fermentation, Biotechnol. J. 10(8) (2015) 1206-1215. [86] L. Hohl, N. Paul, M. Kraume, Dispersion conditions and drop size distributions in stirred micellar multiphase systems, Chem. Eng. Process. Process Intensif. 99(Supplement C) (2016) 149-154. [87] T. Skale, L. Hohl, M. Kraume, A. Drews, Feasibility of w/o Pickering emulsion ultrafiltration, J. Membr. Sci. 535(Supplement C) (2017) 1-9. |
[1] | Ming Liu, Ying Li, Rui Wang, Guoqiang Shao, Pengpeng Lv, Jun Li, Qingshan Zhu. Uniform deposition of ultra-thin TiO2 film on mica substrate by atmospheric pressure chemical vapor deposition: Effect of precursor concentration [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 99-107. |
[2] | Wenting Fan, Fang Zhao, Ming Chen, Jian Li, Xuhong Guo. An efficient microreactor with continuous serially connected micromixers for the synthesis of superparamagnetic magnetite nanoparticles [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 85-91. |
[3] | Abdelgadir Bashir Banaga, Yan-Bin Li, Zhi-Hao Li, Bao-Chang Sun, Guang-Wen Chu. Experimental investigation of the mixing efficiency via intensity of segregation along axial direction of a rotating bar reactor [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 153-159. |
[4] | Wenshi Huang, Yang Zhang, Yuxin Wu, Jingyu Wang, Minmin Zhou. Analysis of particle dispersion in a turbulent flow considering particle rotation [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 29-39. |
[5] | Masoumeh Sheikh Hosseini Lori, Mohammad Delnavaz, Hoda Khoshvaght. Synthesizing and characterizing the magnetic EDTA/chitosan/CeZnO nanocomposite for simultaneous treating of chromium and phenol in an aqueous solution [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 76-88. |
[6] | Junhao Wang, Shugang Ma, Peng Chen, Zhipeng Li, Zhengming Gao, J. J. Derksen. Mixing of miscible shear-thinning fluids in a lid-driven cavity [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 112-123. |
[7] | Danlei Chen, Yiqing Luo, Xigang Yuan. Cascade refrigeration system synthesis based on hybrid simulated annealing and particle swarm optimization algorithm [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 244-255. |
[8] | Hui Yi Leong, Xiao-Qian Fu, Xiang-Yu Liu, Shan-Jing Yao, Dong-Qiang Lin. Characterisation and separation of infectious bursal disease virus-like particles using aqueous two-phase systems [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 72-78. |
[9] | Arnop Dutta, Md. Tuhinur R. Joy, Sk. Md. Ali Ahsan, Mansour K. Gatasheh, Dileep Kumar, Malik Abdul Rub, Md. Anamul Hoque, Mohammad Majibur Rahman, Nasrul Hoda, D.M. Shafiqul Islam. Physico-chemical parameters for the assembly of moxifloxacin hydrochloride and cetyltrimethylammonium chloride mixture in aqueous and alcoholic media [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 280-289. |
[10] | Haoshan Duan, Xi Meng, Jian Tang, Junfei Qiao. Prediction of NOx concentration using modular long short-term memory neural network for municipal solid waste incineration [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 46-57. |
[11] | Yuxi Chai, Yanan Zhang, Yannan Tan, Zhiwei Li, Huangzhao Wei, Chenglin Sun, Haibo Jin, Zhao Mu, Lei Ma. Life cycle assessment of high concentration organic wastewater treatment by catalytic wet air oxidation [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 80-88. |
[12] | Jingran Liu, Yue Wu, Jie Tang, Tao Wang, Feng Ni, Qiumin Wu, Xijiao Yang, Ayyaz Ahmad, Naveed Ramzan, Yisheng Xu. Polymeric assembled nanoparticles through kinetic stabilization by confined impingement jets dilution mixer for fluorescence switching imaging [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 89-96. |
[13] | Xiaoping Li, Jiaxin Pan, Jinwen Shi, Yanlin Chai, Songwei Hu, Qiaorong Han, Yanming Zhang, Xianwen Li, Dengwei Jing. Nanoparticle-induced drag reduction for polyacrylamide in turbulent flow with high Reynolds numbers [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 290-298. |
[14] | Tian Zhang, Qingshan Huang, Shujun Geng, Aqiang Chen, Yan Liu, Haidong Zhang. Impacts of solid physical properties on the performances of a slurry external airlift loop reactor integrating mixing and separation [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 1-12. |
[15] | Xinhao Li, Qing Ye, Jinlong Li, Lingqiang Yan, Xue Jian, Licheng Xie, Jianyu Zhang. Investigation of energy-efficient heat pump assisted heterogeneous azeotropic distillation for separating of acetonitrile/ethyl acetate/n-hexane mixture [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 20-33. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 37
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 580
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||