Chin.J.Chem.Eng. ›› 2019, Vol. 27 ›› Issue (2): 386-390.DOI: 10.1016/j.cjche.2018.04.029
• Catalysis, kinetics and reaction engineering • Previous Articles Next Articles
Shi Yin, Lingjun Zhu, Xiaoliu Wang, Yingying Liu, Shurong Wang
Received:
2018-02-10
Revised:
2018-03-30
Online:
2019-03-18
Published:
2019-02-28
Contact:
Lingjun Zhu, Shurong Wang
Supported by:
Supported by the National Natural Science Foundation of China (51661145011, 51476142), the National Science and Technology Supporting Plan Through Contract (2015BAD15B06) and the Program of Introducing Talents of Discipline to University (B08026)
Shi Yin, Lingjun Zhu, Xiaoliu Wang, Yingying Liu, Shurong Wang
通讯作者:
Lingjun Zhu, Shurong Wang
基金资助:
Supported by the National Natural Science Foundation of China (51661145011, 51476142), the National Science and Technology Supporting Plan Through Contract (2015BAD15B06) and the Program of Introducing Talents of Discipline to University (B08026)
Shi Yin, Lingjun Zhu, Xiaoliu Wang, Yingying Liu, Shurong Wang. The influence mechanism of solvent on the hydrogenation of dimethyl oxalate[J]. Chin.J.Chem.Eng., 2019, 27(2): 386-390.
Shi Yin, Lingjun Zhu, Xiaoliu Wang, Yingying Liu, Shurong Wang. The influence mechanism of solvent on the hydrogenation of dimethyl oxalate[J]. Chinese Journal of Chemical Engineering, 2019, 27(2): 386-390.
[1] P. Rakkiyappan, R. Kannan, Ethanol production of some promising commercial sugarcane varieties for ecofriendly use of ethanol as an automobile fuel, Int. J. Sci. Emerg. Technol. 5(2012) 178-180. [2] S. Prasad, A. Singh, H.C. Joshi, Ethanol as an alternative fuel from agricultural, industrial and urban residues, Resour. Conserv. Recycl. 50(2007) 1-39. [3] K. Atsonios, K.D. Panopoulos, E. Kakaras, Thermocatalytic CO2 hydrogenation for methanol and ethanol production:process improvements, Int. J. Hydrog. Energy 41(2016) 792-806. [4] S. Zhou, S. Keelnatham, L.P. Yomano, L.O. Ingram, S.W. York, Re-engineering bacteria for production, Biotechnol. Bioeng. 58(2014) 204-214. [5] J. Ding, Y.T. Liu, J. Zhang, K.F. Liu, H.C. Xiao, F.H. Kong, Y.P. Sun, J.G. Chen, The excellent performance in hydrogenation of esters over cu/ZrO2 catalyst prepared by bio-derived salicylic acid, Catal. Sci. Technol. 6(2016) 7220-7230. [6] S.R. Wang, S. Yin, W.W. Guo, Y.Y. Liu, L.Z. Zhu, X.L. Wang, Influence of inlet gas composition on dimethyl ether carbonylation and the subsequent hydrogenation of methyl acetate in two-stage ethanol synthesis, New J. Chem. 40(2016) 6460-6466. [7] S.R. Wang, W.W. Guo, H.X. Wang, L.J. Zhu, S. Yin, K.Z. Qiu, Effect of the Cu/SBA-15 catalyst preparation method on methyl acetate hydrogenation for ethanol production, New J. Chem. 38(2014) 2792-2800. [8] J.W. Zheng, J.F. Zhou, H.Q. Lin, X.P. Duan, C.T. Williams, Y.Z. Yuan, CO-Mediated deactivation mechanism of SiO2-supported copper catalysts during dimethyl oxalate hydrogenation to ethylene glycol, J. Phys. Chem. C. 119(2015) 13758-13766. [9] H. Yue, Y. Zhao, X. Ma, J. Gong, Ethylene glycol:Properties, synthesis, and applications, Chem. Soc. Rev. 41(2012) 4218-4244. [10] J.L. Gong, H.R. Yue, Y.J. Zhao, S. Zhao, L. Zhao, J. Lv, S.P. Wang, Synthesis of ethanol via syngas on Cu/SiO2 catalysts with balanced Cu0-Cu+ sites, J. Am. Chem. Soc. 134(2012) 13922-13925. [11] Y.B. Song, J. Zhang, J. Lv, Y.J. Zhao, X.B. Ma, Hydrogenation of dimethyl oxalate over copper-based catalysts:Acid-base properties and reaction paths, Ind. Eng. Chem. Res. 54(2015) 9699-9707. [12] H.C. Xiao, D.B. Li, W.H. Li, Y.H. Sun, Study of induction period over K2CO3/MoS2 catalyst for higher alcohols synthesis, Fuel Process. Technol. 91(2010) 383-387. [13] L. Zhao, W.B. Li, J. Zhou, X.L. Mu, K.G. Fang, One-step synthesis of CuCo alloy/MN2O3 Al2O3 composites and their application in higher alcohol synthesis from syngas, Int. J. Hydrog. Energy 42(2017) 17414-17424. [14] C. Wen, A.Y. Yin, Y.Y. Cui, X.L. Yang, W.L. Dai, K.N. Fan, Enhanced catalytic performance for SiO2-TiO2 binary oxide supported Cu-based catalyst in the hydrogenation of dimethyloxalate, Appl. Catal. A Gen. 458(2013) 82-89. [15] S.R. Wang, X.B. Li, Q.Q. Yin, L.J. Zhu, Z.Y. Luo, Highly active and selective Cu/SiO2 catalysts prepared by the urea hydrolysis method in dimethyl oxalate hydrogenation, Catal. Commun. 12(2011) 1246-1250. [16] S.R. Wang, Q.Q. Yin, X.B. Li, Catalytic performance and texture of TEOS based Cu/SiO2 catalysts for hydrogenation of dimethyl oxalate to ethylene glycol, Chem. Res. Chin. Univ. 28(2012) 119-123. [17] S. Zhao, H.R. Yue, Y.J. Zhao, B. Wang, Y.C. Geng, J. Lv, S.P. Wang, J.L. Gong, X.B. Ma, Chemoselective synthesis of ethanol via hydrogenation of dimethyl oxalate on Cu/SiO2:enhanced stability with boron dopant, J. Catal. 297(2013) 142-150. [18] X.P. Kong, C.L. Ma, J. Zhang, J.Q. Sun, J.Q. Chen, K.F. Liu, Effect of leaching temperature on structure and performance of Raney Cu catalysts for hydrogenation of dimethyl oxalate, Appl. Catal. A Gen. 509(2016) 153-160. [19] Y.J. Zhao, S.M. Li, Y. Wang, B. Shan, J. Zhang, S.P. Wang, X.B. Ma, Efficient tuning of surface copper species of Cu/SiO2 catalyst for hydrogenation of dimethyl oxalate to ethylene glycol, Chem. Eng. J. 313(2017) 759-768. [20] K. Zhong, X. Wang, The influence of different precipitants on the copper-based catalysts for hydrogenation of ethylacetate to ethanol, Int. J. Hydrog. Energy 39(2014) 10951-10958. [21] L.F. Chen, P.J. Guo, M.H. Qiao, S.R. Yan, H.X. Li, W. Shen, Cu/SiO2 catalysts prepared by the ammonia-evaporation method:texture, structure, and catalytic performance in hydrogenation of dimethyl oxalate to ethylene glycol, J. Catal. 257(2008) 172-180. [22] X.Y. Guo, A.Y. Yin, W.L. Dai, K.N. Fan, One pot synthesis of ultra-high copper contented Cu/SBA-15 material as excellent catalyst in the hydrogenation of dimethyl oxalate to ethylene glycol, Catal. Lett. 132(2009) 22-27. [23] X.P. Kong, Z. Chen, Y.H. Wu, R.H. Wang, J.G. Chen, L.F. Ding, Synthesis of Cu-Mg/ZnO catalysts and catalysis in dimethyl oxalate hydrogenation to ethylene glycol:enhanced catalytic behavior in the presence of a Mg2+ dopant, RSC Adv. 7(2017) 49548-49561. [24] H.H. Fan, J.J. Tan, Y.L. Zhu, H.Y. Zheng, Y.W. Li, Efficient hydrogenation of dimethyl oxalate to methyl glycolate over highly active immobilized-ruthenium catalyst, J. Mol. Catal. A-Chem. 425(2016) 68-75. [25] J. Lin, X. Zhao, Y.H. Cui, H.B. Zhang, D.W. Liao, Effect of feedstock solvent on the stability of Cu/SiO2 catalyst for vapor-phase hydrogenation of dimethyl oxalate to ethylene glycol, Chem. Commun. 48(2012) 1177-1179. [26] H.R. Yue, Y.J. Zhao, S. Zhao, B. Wang, X.B. Ma, J.L. Gong, A copper-phyllosilicate coresheath nanoreactor for carbon-oxygen hydrogenolysis reactions, Nat. Commun. 4(2013) 2339-2346. [27] H.R. Yue, X.B. Ma, J.L. Gong, An alternative synthetic approach for efficient catalytic conversion of syngas to ethanol, Acc. Chem. Res. 47(2014) 1483-1492. [28] A.Y. Yin, X.Y. Guo, W.L. Dai, K.N. Fan, The nature of active copper species in Cu-HMS catalyst for hydrogenation of dimethyl oxalate to ethylene glycol:new insights on the synergetic effect between Cu0 and Cu+, J. Phys. Chem. C 113(2009) 11003-11013. [29] E.K. Poels, D.S. Brands, Modification of Cu/ZnO/SiO2 catalysts by high temperature reduction, Appl. Catal. A Gen. 191(2000) 83-96. [30] Y.F. Zhu, X. Kong, X.Q. Li, G.Q. Ding, Y.L. Zhu, Y.W. Li, Cu nanoparticles inlaid mesoporous Al2O3 as a high-performance bifunctional catalyst for ethanol synthesis via dimethyl oxalate hydrogenation, ACS Catal. 4(2014) 3612-3620. [31] S. Veibel, J.I. Nielsen, On the mechanism of the Guerbet reaction, Tetrahedron 23(1967) 1723-1733. [32] T.H. Yoon, S.B. Johnson, C.B. Musgrave, Adsorption of organic matter at mineral/water interfaces:I. ATR-FTIR spectroscopic and quantum chemical study of oxalate adsorbed at boehmite/water and corundum/water interfaces, Geochim. Cosmochim. Acta 68(2004) 4505-4518. [33] S.J. Hug, D. Bahnemann, Infrared spectra of oxalate, malonate and succinate adsorbed on the aqueous surface of rutile, anatase and lepidocrocite measured with in situ ATR-FTIR, J. Electron Spectrosc. 150(2006) 208-219. [34] J.F. Bower, E. Skucas, R.L. Patman, M.J. Krische, Catalytic C\C coupling via transfer hydrogenation:reverse prenylation, crotylation, and allylation from the alcohol or aldehyde oxidation level, J. Am. Chem. Soc. 129(2007) 15134-15135. [35] A.M. Hilmen, M. Xu, M.J.L. Gines, E. Iglesia, Synthesis of higher alcohols on copper catalysts supported on alkali-promoted basic oxides, Appl. Catal. A Gen. 169(1998) 355-372. [36] C. Carlini, M.D. Girolamo, M. Marchionna, M. Noviello, A.M.R. Galletti, G. Sbrana, Selective synthesis of isobutanol by means of the Guerbet reaction:part 1. Methanol/n-propanol condensation by using copper based catalytic systems, J. Mol. Catal. A Chem. 184(2002) 273-280. [37] K.M. Minachev, K.P. Kotyaev, G.I. Lin, A.Y. Rozovskii, Temperature-programmed surface reactions of methanol on commercial cu-containing catalysts, Catal. Lett. 3(1989) 299-307. [38] M. Turco, G. Bagnasco, U. Costantino, F. Marmottini, T. Montanari, G. Ramis, Production of hydrogen from oxidative steam reforming of methanol:Ⅱ. Catalytic activity and reaction mechanism on Cu/ZnO/Al2O3 hydrotalcite-derived catalysts, J. Catal. 228(2004) 56-65. |
[1] | Peipei Ai, Huiqing Jin, Jie Li, Xiaodong Wang, Wei Huang. Ultra-stable Cu-based catalyst for dimethyl oxalate hydrogenation to ethylene glycol [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 186-193. |
[2] | Yingxi Gao, Jiayi Shi, Jie Wang, Fan Zhang, Shichao Tian, Zhiyong Zhou, Zhongqi Ren. Enrichment of nervonic acid in Acer truncatum Bunge oil by combination of two-stage molecular distillation, one-stage urea complexation and five-stage solvent crystallization [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 61-71. |
[3] | Wen Yu, Yiyang Bo, Yiling Luo, Xiyan Huang, Rixiang Zhang, Jiaheng Zhang. Enhancing effect of choline chloride-based deep eutectic solvents with polyols on the aqueous solubility of curcumin-insight from experiment and theoretical calculation [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 160-168. |
[4] | Qunfeng Zhang, Bingcheng Li, Yuan Zhou, Deshuo Zhang, Chunshan Lu, Feng Feng, Jinghui Lv, Qingtao Wang, Xiaonian Li. Regulation of the selective hydrogenation performance of sulfur-doped carbon-supported palladium on chloronitrobenzene [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 69-75. |
[5] | Bin Gao, Junwen Chen, Qi Zuo, Hongyan Wang, Wenlin Li. The critical role of Zr in controlling the activity of Pd/Beta on the hydrogenation of phenol to cyclohexanone [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 79-87. |
[6] | Yunchang Fan, Chunyan Zhu, Sheli Zhang, Lei Zhang, Qiang Wang, Feng Wang. Efficient and selective extraction of sinomenine by deep eutectic solvents [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 109-117. |
[7] | Qi Yang, Weikang Dai, Maoshuai Li, Jie Wei, Yi Feng, Cheng Yang, Wanxin Yang, Ying Zheng, Jie Ding, Mei-Yan Wang, Xinbin Ma. Enhanced selective hydrogenation of glycolaldehyde to ethylene glycol over Cu0-Cu+ sites [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 141-150. |
[8] | Peipei Ai, Li Zhang, Jinchi Niu, Huiqing Jin, Wei Huang. Boron-doped lamellar porous carbon supported copper catalyst for dimethyl oxalate hydrogenation [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 222-229. |
[9] | Xianglin Liu, Minjie Xu, Chenxi Cao, Zixu Yang, Jing Xu. Effects of zinc on χ-Fe5C2 for carbon dioxide hydrogenation to olefins: Insights from experimental and density function theory calculations [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 206-214. |
[10] | Yinglin Mai, Xiaoling Xian, Lei Hu, Xiaodong Zhang, Xiaojie Zheng, Shunhui Tao, Xiaoqing Lin. Liquid–liquid extraction of levulinic acid from aqueous solutions using hydrophobic tri-n-octylamine/alcohol-based deep eutectic solvent [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 248-256. |
[11] | Fang Chen, Tao Zhou, Lijie Li, Chongwei An, Jun Li, Duanlin Cao, Jianlong Wang. Morphology prediction of dihydroxylammonium 5,5'-bistetrazole-1,1'-diolate (TKX-50) crystal in different solvent systems using modified attachment energy model [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 181-193. |
[12] | Lu Lv, Min Zhao, Yanan Liu, Yufei He, Dianqing Li. Fabrication of hydrophobic Pd/Al2O3-phosphoric acid via P-O-Al bond for liquid hydrogenation reaction [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 232-242. |
[13] | Zhiwei Du, Jinxue Cheng, Qinglin Huang, Mingxing Chen, Changfa Xiao. Electrospinning organic solvent resistant preoxidized poly(acrylonitrile) nanofiber membrane and its properties [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 289-299. |
[14] | Lei Sun, Zhongjun Zhao, Xiushan Yang, Yan Sun, Quande Li, Chunhui Luo, Qiang Zhao. Thermochemical decomposition of phosphogypsum with Fe-P slag via a solid-state reaction [J]. Chinese Journal of Chemical Engineering, 2022, 47(7): 113-119. |
[15] | Junru Liu, Rui Hu, Xinlei Liu, Qunfeng Zhang, Guanghua Ye, Zhijun Sui, Xinggui Zhou. Modeling of propane dehydrogenation combined with chemical looping combustion of hydrogen in a fixed bed reactor [J]. Chinese Journal of Chemical Engineering, 2022, 47(7): 165-173. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 70
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 582
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||