[1] |
F.E. Osterloh, Inorganic materials as catalysts for photochemical splitting of water, Chem. Mater. 20(2008) 35-54.
|
[2] |
A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature 238(1972) 37-38.
|
[3] |
H. Kato, H. Kobayashi, A. Kudo, Role of Ag+ in the band structures and photocatalytic properties of AgMO3(M:Ta and Nb) with the perovskite structure, J. Phys. Chem. B 106(2002) 12441-12447.
|
[4] |
K. Maeda, K. Domen, Solid solution of GaN and ZnO as a stable photocatalyst for overall water splitting under visible light, Chem. Mater. 22(2010) 612-623.
|
[5] |
A. Ishikawa, T. Takata, J.N. Kondo, M. Hara, H. Kobayashi, K. Domen, Oxysulfide Sm2Ti2S2O5 as a stable photocatalyst for water oxidation and reduction under visible light irradiation (λ ≤ 650 nm), J. Am. Chem. Soc. 124(2002) 13547-13553.
|
[6] |
M. Kitano, M. Hara, Heterogeneous photocatalytic cleavage of water, J. Mater. Chem. 20(2010) 627-641.
|
[7] |
M. Ni, M.K.H. Leung, D.Y.C. Leung, K. Sumathy, A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production, Renew. Sust. Energ. Rev. 11(2007) 401-425.
|
[8] |
H.N. Kim, T.W. Kim, I.Y. Kim, S.J. Hwang, Cocatalyst-free photocatalysts for efficient visible-light-induced H2 production:porous assemblies of CdS quantum dots and layered titanate nanosheets, Adv. Funct. Mater. 21(2011) 3111-3118.
|
[9] |
N. Serpone, D. Lawless, R. Khairutdinov, Size effects on the photophysical properties of colloidal anatase TiO2 particles:size quantization versus direct transitions in this indirect semiconductor? J. Phys. Chem. 99(1995) 16646-16654.
|
[10] |
I. Robel, M. Kuno, P.V. Kamat, Size-dependent electron injection from excited CdSe quantum dots into TiO2 nanoparticles, J. Am. Chem. Soc. 129(2007) 4136-4137.
|
[11] |
B.R. Hyun, A.C. Bartnik, J.K. Lee, H. Imoto, L.F. Sun, J.J. Choi, Y. Chujo, T. Hanrath, C.K. Ober, F.W. Wise, Role of solvent dielectric properties on charge transfer from PbS nanocrystals to molecules, Nano Lett. 10(2010) 318-323.
|
[12] |
R.S. Dibbell, D.F. Watson, Distance-dependent electron transfer in tethered assemblies of CdS quantum dots and TiO2 nanoparticles, J. Phys. Chem. C 113(2009) 3139.
|
[13] |
A. Maurya, P. Chauhan, Structural and optical characterization of CdS/TiO2 nanocomposite, Mater. Charact. 62(2011) 382-390.
|
[14] |
S. Banerjee, S.K. Mohapatra, P.P. Das, M. Misra, Synthesis of coupled semiconductor by filling 1D TiO2 nanotubes with CdS, Chem. Mater. 20(2008) 6784-6791.
|
[15] |
K.H. Lin, C.Y. Chuang, Y.Y. Lee, F.C. Li, Y.M. Chang, Charge transfer in the heterointerfaces of CdS/CdSe cosensitized TiO2 photoelectrode, J. Phys. Chem. C 116(2011) 1550-1555.
|
[16] |
K.R. Gopidas, M. Bohorquez, P.V. Kamat, Photophysical and photochemical aspects of coupled semiconductors:charge-transfer processes in colloidal cadmium sulfide-titania and cadmium sulfide-silver(I) iodide systems, J. Phys. Chem. 94(1990) 6435-6440.
|
[17] |
P. Kubelka, F. Munk, Reflection characteristics of paints, Zh. Tekh. Phys. 12(1931) 593-601.
|
[18] |
H. Park, W. Choi, M.R. Hoffmann, Effects of the preparation method of the ternary CdS/TiO2/Pt hybrid photocatalysts on visible light-induced hydrogen production, J. Mater. Chem. 18(2008) 2379-2385.
|
[19] |
H.I. Kim, J. Kim, W. Kim, W. Choi, Enhanced photocatalytic and photoelectrochemical activity in the ternary hybrid of CdS/TiO2/WO3 through the cascadal electron transfer, J. Phys. Chem. C 115(2011) 9797-9805.
|
[20] |
H. Park, Y.K. Kim, W. Choi, Reversing CdS preparation order and its effects on photocatalytic hydrogen production of CdS/Pt-TiO2 hybrids under visible light, J. Phys. Chem. C 115(2011) 6141-6148.
|
[21] |
W. Zhang, Y. Wang, Z. Wang, Z. Zhong, R. Xu, Highly efficient and noble metal-free NiS/CdS photocatalysts for H2 evolution from lactic acid sacrificial solution under visible light, Chem. Commun. 46(2010) 7631-7633.
|
[22] |
J. Zhang, Q. Xu, Z.C. Feng, C. Li, Importance of the relationship between surface phases and photocatalytic activity of TiO2, Angew. Chem. Int. Ed. 47(2008) 1766-1769.
|
[23] |
J. Piris, A.J. Ferguson, J.L. Blackburn, A.G. Norman, G. Rumbles, D.C. Selmarten, N. Kopidakis, Efficient photoinduced charge injection from chemical bath deposited CdS into mesoporous TiO2 probed with time-resolved microwave conductivity, J. Phys. Chem. C 112(2008) 7742-7749.
|
[24] |
S.H. Lin, R.G. Alden, M. Hayashi, S. Suzuki, H.A. Murchison, Theoretical calculation of femtosecond time-resolved spectra of initial electron transfer in photosynthetic reaction centers, J. Phys. Chem. 97(1993) 12566-12573.
|
[25] |
J.S. Jang, S.H. Choi, H.G. Kim, J.S. Lee, Location and state of Pt in platinized CdS/TiO2 photocatalysts for hydrogen production from water under visible light, J. Phys. Chem. C 112(2008) 17200-17205.
|
[26] |
C.T. Yuan, Y.G. Wang, K.Y. Huang, T.Y. Chen, P. Yu, J. Tang, A. Sitt, U. Banin, O. Millo, Multiple lipid compartments slow vesicle contents release in lipases and serum, ACS Nano 6(2012) 176-182.
|
[27] |
S. Ryuzaki, J. Onoe, Influence of charge accumulation of photogenerated carriers in the vicinity of donor/acceptor interface on the open-circuit voltage of zincporphyrin/C60 heterojunction organic photovoltaic cells, J. Phys. D. Appl. Phys. 44(2011) 265102-265108.
|
[28] |
P. Siders, R.A. Marcus, Quantum effects in electron-transfer reactions, J. Am. Chem. Soc. 103(1981) 741-747.
|