Chinese Journal of Chemical Engineering ›› 2019, Vol. 27 ›› Issue (3): 677-684.DOI: 10.1016/j.cjche.2018.03.036
• Energy, Resources and Environmental Technology • Previous Articles Next Articles
Ashutosh Kumar1, Ram Prasad2, Yogesh Chandra Sharma1
Received:
2017-11-22
Revised:
2018-01-19
Online:
2019-04-25
Published:
2019-03-28
Contact:
Yogesh Chandra Sharma,E-mail address:ysharma.apc@iitbhu.ac.in
Ashutosh Kumar1, Ram Prasad2, Yogesh Chandra Sharma1
通讯作者:
Yogesh Chandra Sharma,E-mail address:ysharma.apc@iitbhu.ac.in
Ashutosh Kumar, Ram Prasad, Yogesh Chandra Sharma. Ethanol steam reforming study over ZSM-5 supported cobalt versus nickel catalyst for renewable hydrogen generation[J]. Chinese Journal of Chemical Engineering, 2019, 27(3): 677-684.
Ashutosh Kumar, Ram Prasad, Yogesh Chandra Sharma. Ethanol steam reforming study over ZSM-5 supported cobalt versus nickel catalyst for renewable hydrogen generation[J]. 中国化学工程学报, 2019, 27(3): 677-684.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2018.03.036
[1] | J. Lin, L. Chen, C.K.S. Choong, Z. Zhong, L. Huang, Molecular catalysis for the steam reforming of ethanol, Sci. China Chem. 58(1) (2015) 60-78. |
[2] | C. Montero, L. Oar-Arteta, A. Remiro, A. Arandia, J. Bilbao, A.G. Gayubo, Thermodynamic comparison between bio-oil and ethanol steam reforming, Int. J. Hydrogen Energy 40(46) (2015) 15963-15971. |
[3] | J.F. Haw, Zeolite acid strength and reaction mechanisms in catalysis, Phys. Chem. Chem. Phys. 4(22) (2002) 5431-5441. |
[4] | C. Zhang, S. Li, G. Wu, et al., Steam reforming of ethanol over skeletal Ni-based catalysts:A temperature programmed desorption and kinetic study, AICHE J. 60(2) (2014) 635-644. |
[5] | A.F. Lucredio, J.D.A. Bellido, A. Zawadzki, E.M. Assaf, Co catalysts supported on SiO2 and γ-Al2O3 applied to ethanol steam reforming:Effect of the solvent used in the catalyst preparation method, Fuel 90(4) (2011) 1424-1430. |
[6] | C. Wu, P.T. Williams, A novel nano-Ni/SiO2 catalyst for hydrogen production from steam reforming of ethanol, Environ. Sci. Technol. 44(15) (2010) 5993-5998. |
[7] | L. Zhang, W. Li, J. Liu, C. Guo, Y. Wang, J. Zhang, Ethanol steam reforming reactions over Al2O3·SiO2-supported Ni-La catalysts, Fuel 88(3) (2009) 511-518. |
[8] | E. Moretti, L. Storaro, A. Talon, S. Chitsazan, G. Garbarino, G. Busca, et al., Ceria-zirconia based catalysts for ethanol steam reforming, Fuel 153(2015) 166-175. |
[9] | M.S. Scott, G.I.N. Waterhouse, K. Kato, S.L.Y. Chang, H. Idriss, T. Sohnel, Structural analysis of Rh-Pd/CeO2 catalysts under reductive conditions:An X-ray investigation, Top. Catal. 58(2-3) (2015) 123-133. |
[10] | E. Varga, Z. Ferencz, A. Oszko, A. Erdohelyi, J. Kiss, Oxidation states of active catalytic centers in ethanol steam reforming reaction on ceria based Rh promoted Co catalysts:An XPS study, J. Mol. Catal. A Chem. 397(2015) 127-133. |
[11] | G. Vari, L. Ovari, C. Papp, H.P. Steinruck, J. Kiss, Z. Konya, The interaction of cobalt with CeO2(111) prepared on Cu(111), J. Phys. Chem. C 119(17) (2015) 9324-9333. |
[12] | S.R. Wang, W.W. Guo, L. Guo, X.B. Li, Q. Wang, Experimental and subsequent mechanism research on the steam reforming of ethanol over a Ni/CeO2 catalyst, Int. J. Green Energy 12(7) (2015) 694-701. |
[13] | A.M. Karim, Y. Su, M.H. Engelhard, D.L. King, Y. Wang, Catalytic roles of Co0 and Co2+ during steam reforming of ethanol on Co/MgO catalysts, ACS Catal. 1(4) (2011) 279-286. |
[14] | A. Machocki, A. Denis, W. Grzegorczyk, W. Gac, Nano-and micro-powder of zirconia and ceria-supported cobalt catalysts for the steam reforming of bio-ethanol, Appl. Surf. Sci. 256(17) (2010) 5551-5558. |
[15] | B.S. Kwak, K.M. Kim, S.W. Jo, et al., Characterizations of bimetallic NiV-supported SiO2 catalysts prepared for effectively hydrogen evolutions from ethanol steam reforming, J. Ind. Eng. Chem. 37(2016) 57-66. |
[16] | P.K. Sharma, N. Saxena, V.K. Bind, P.K. Roy, A. Bhatt, Steam reforming of ethanol over mesoporous Rh/CeZrO2:Mechanistic evaluation using in situ DRIFT spectroscopy, Can. J. Chem. Eng. 94(4) (2016) 752-760. |
[17] | L. Huang, C. Choong, L. Chen, et al., Monometallic carbonyl-derived CeO2-supported Rh and Co bicomponent catalysts for CO-free, high-yield H2 generation from lowtemperature ethanol steam reforming, ChemCatChem 7(10) (2015) 1509. |
[18] | K. Sato, K. Kawano, A. Ito, Y. Takita, K. Nagaoka, Hydrogen production from bioethanol:Oxidative steam reforming of aqueous ethanol triggered by oxidation of Ni/Ce0.5Zr0.5O2-x at low temperature, ChemSusChem 3(12) (2010) 1364-1366. |
[19] | G. Busca, U. Costantino, T. Montanari, G. Ramis, C. Resini, M. Sisani, Nickel versus cobalt catalysts for hydrogen production by ethanol steam reforming:Ni-Co-Zn-Al catalysts from hydrotalcite-like precursors, Int. J. Hydrogen Energy 35(11) (2010) 5356-5366. |
[20] | M. Li, X. Wang, S. Li, S. Wang, X. Ma, Hydrogen production from ethanol steam reforming over nickel based catalyst derived from Ni/Mg/Al hydrotalcite-like compounds, Int. J. Hydrogen Energy 35(13) (2010) 6699-6708. |
[21] | A.F. Lucredio, J.D.A. Bellido, E.M. Assaf, Effects of adding La and Ce to hydrotalcitetype Ni/Mg/Al catalyst precursors on ethanol steam reforming reactions, Appl. Catal. A Gen. 388(1-2) (2010) 77-85. |
[22] | C. Resini, T. Montanari, L. Barattini, et al., Hydrogen production by ethanol steam reforming over Ni catalysts derived from hydrotalcite-like precursors:Catalyst characterization, catalytic activity and reaction path, Appl. Catal. A Gen. 355(1-2) (2009) 83-93. |
[23] | F. Aupretre, C. Descorme, D. Duprez, D. Casanave, D. Uzio, Ethanol steam reforming over MgxNi1-x Al2O3 spinel oxide-supported Rh catalysts, J. Catal. 233(2) (2005) 464-477. |
[24] | M.N. Barroso, M. Gomez, L. Arrua, M.C. Abello, Reactivity of aluminum spinels in the ethanol steam reforming reaction, Catal. Lett. 109(1-2) (2006) 13-19. |
[25] | S.M. de Lima, A.M. da Silva, L.O.O. da Costa, et al., Evaluation of the performance of Ni/La2O3 catalyst prepared from LaNiO3 perovskite-type oxides for the production of hydrogen through steam reforming and oxidative steam reforming of ethanol, Appl. Catal. A Gen. 377(1-2) (2010) 181-190. |
[26] | L. Lang, S. Zhao, X. Yin, W. Yang, C. Wu, Catalytic activities of K-modified zeolite ZSM-5 supported rhodium catalysts in low-temperature steam reforming of bioethanol, Int. J. Hydrogen Energy 40(32) (2015) 9924-9934. |
[27] | A. Vizcaino, A. Carrero, J. Calles, Hydrogen production by ethanol steam reforming over Cu-Ni supported catalysts, Int. J. Hydrogen Energy 32(10-11) (2007) 1450-1461. |
[28] | F.C. Campos-Skrobot, R.C.P. Rizzo-Domingues, N.R.C. Fernandes-Machado, M.P. Cantao, Novel zeolite-supported rhodium catalysts for ethanol steam reforming, J. Power Sources 183(2) (2008) 713-716. |
[29] | H. Inokawa, S. Nishimoto, Y. Kameshima, M. Miyake, Difference in the catalytic activity of transition metals and their cations loaded in zeolite Y for ethanol steam reforming, Int. J. Hydrogen Energy 35(21) (2010) 11719-11724. |
[30] | H. Inokawa, S. Nishimoto, Y. Kameshima, M. Miyake, Promotion of H2 production from ethanol steam reforming by zeolite basicity, Int. J. Hydrogen Energy 36(23) (2011) 15195-15202. |
[31] | B.S. Kwak, J.S. Lee, J.S. Lee, B.-H. Choi, M.J. Ji, M. Kang, Hydrogen-rich gas production from ethanol steam reforming over Ni/Ga/Mg/Zeolite Y catalysts at mild temperature, Appl. Energy 88(12) (2011) 4366-4375. |
[32] | N. Wu, J. Low, T. Liu, J. Yu, S. Cao, Hierarchical hollow cages of Mn-Co layered double hydroxide as supercapacitor electrode materials, Appl. Surf. Sci. 413(2017) 35-40. |
[33] | D. Kim, B.S. Kwak, B.-K. Min, M. Kang, Characterization of Ni and W co-loaded SBA-15 catalyst and its hydrogen production catalytic ability on ethanol steam reforming reaction, Appl. Surf. Sci. 332(2015) 736-746. |
[34] | C.M.A. Parlett, A. Aydin, L.J. Durndell, et al., Tailored mesoporous silica supports for Ni catalysed hydrogen production from ethanol steam reforming, Catal. Commun. 91(2017) 76-79. |
[35] | S. He, Z. Mei, N. Liu, et al., Ni/SBA-15 catalysts for hydrogen production by ethanol steam reforming:Effect of nickel precursor, Int. J. Hydrogen Energy 42(21) (2017) 14429-14438. |
[36] | S. He, S. He, L. Zhang, et al., Hydrogen production by ethanol steam reforming over Ni/SBA-15 mesoporous catalysts:Effect of Au addition, Catal. Today 258(2015) 162-168. |
[37] | A.J. Vizcaino, A. Carrero, J.A. Calles, Comparison of ethanol steam reforming using Co and Ni catalysts supported on SBA-15 modified by Ca and Mg, Fuel Process. Technol. 146(2016) 99-109. |
[38] | B. Bej, N.C. Pradhan, S. Neogi, Production of hydrogen by steam reforming of methane over alumina supported nano-NiO/SiO2 catalyst, Catal. Today 207(2013) 28-35. |
[39] | A. Chica, Zeolites:Promised materials for the sustainable production of hydrogen, ISRN Chem. Eng. 2013(2013) 1-19. |
[40] | Y.C. Sharma, A. Kumar, R. Prasad, S.N. Upadhyay, Ethanol steam reforming for hydrogen production:Latest and effective catalyst modification strategies to minimize carbonaceous deactivation, Renew. Sust. Energ. Rev. 74(2017) 89-103. |
[41] | A. Kumar, R. Prasad, Y.C. Sharma, Ethanol steam reforming with Co0(111) for hydrogen and carbon nanofilament generation, Resource-Efficient Technol. 3(4) (2017) 422-428. |
[42] | X. Wang, H.-Y. Chen, W.M.H. Sachtler, Catalytic reduction of NOx by hydrocarbons over Co/ZSM-5 catalysts prepared with different methods, Appl. Catal. B Environ. 26(4) (2000) L227-L39. |
[43] | A. Penkova, S. Dzwigaj, R. Kefirov, K. Hadjiivanov, M. Che, Effect of the preparation method on the state of nickel ions in BEA zeolites. A study by Fourier transform infrared spectroscopy of adsorbed CO and NO, temperature-programmed reduction, and X-ray diffraction, Phys. Chem. C 111(24) (2007) 8623-8631. |
[44] | C.I. Round, C.D. Williams, K. Latham, C.V.A. Duke, Ni-ZSM-5 and Cu-ZSM-5 synthesized directly from aqueous fluoride gels, Chem. Mater. 13(2) (2001) 468-472. |
[45] | S.-J. Jong, S. Cheng, Reduction behavior and catalytic properties of cobalt containing ZSM-5 zeolites, Appl. Catal. A Gen. 126(1) (1995) 51-66. |
[46] | J.R. Ferraro, Low-frequency Vibrations of Inorganic and Coordination Compounds, Springer, US, 2012. |
[47] | B. Zhang, X. Tang, Y. Li, Y. Xu, W. Shen, Hydrogen production from steam reforming of ethanol and glycerol over ceria-supported metal catalysts, Int. J. Hydrogen Energy 32(13) (2007) 2367-2373. |
[1] | Baoyu Liu, Feng Xiong, Jianwen Zhang, Manna Wang, Yi Huang, Yanxiong Fang, Jinxiang Dong. Enhanced ortho-selective t–butylation of phenol over sulfonic acid functionalized mesopore MTW zeolites [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 1-7. |
[2] | Jinlong Liu, Chenye Wang, Xingrui Wang, Chen Zhao, Huiquan Li, Ganyu Zhu, Jianbo Zhang. Reconstruction and recovery of anatase TiO2 from spent selective catalytic reduction catalyst by NaOH hydrothermal method [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 53-60. |
[3] | Yifan Jiang, Bingqi Xie, Jisong Zhang. Highly reactive and reusable heterogeneous activated carbons-based palladium catalysts for Suzuki-Miyaura reaction [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 165-172. |
[4] | Peipei Ai, Huiqing Jin, Jie Li, Xiaodong Wang, Wei Huang. Ultra-stable Cu-based catalyst for dimethyl oxalate hydrogenation to ethylene glycol [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 186-193. |
[5] | Wenwen Zhang, Zhigang Xue, Liyun Cui, Haoliang Gao, Di Zhao, Rongfei Zhou, Weihong Xing. Synthesis of an IMF zeolite membrane for the separation of xylene isomer [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 205-211. |
[6] | Xiaolin Guo, Zhaoyang Zhang, Pengfei Xing, Shuai Wang, Yibing Guo, Yanxin Zhuang. Kinetic mechanism of copper extraction from methylchlorosilane slurry residue using hydrogen peroxide as oxidant [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 228-234. |
[7] | Hammad Saulat, Jianhua Yang, Tao Yan, Waseem Raza, Wensen Song, Gaohong He. Tungsten incorporated mobil-type eleven zeolite membranes: Facile synthesis and tuneable wettability for highly efficient separation of oil/water mixtures [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 242-252. |
[8] | Yuehua Liu, Lili Chen, Shoujun Liu, Song Yang, Ju Shangguan. Role of iron-based catalysts in reducing NOx emissions from coal combustion [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 1-8. |
[9] | Hae-Kyun Park, Dong-Hyuk Park, Bum-Jin Chung. Influence of the electrolyte conductivity on the critical current density and the breakdown voltage [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 169-175. |
[10] | Meihua Zhu, Xingguo An, Tian Gui, Ting Wu, Yuqin Li, Xiangshu Chen. Effects of ion-exchange on the pervaporation performance and microstructure of NaY zeolite membrane [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 176-181. |
[11] | Fei Li, Xuemei Wang, Pengze Zhang, Qinqin Wang, Mingyuan Zhu, Bin Dai. Nitrogen and phosphorus co-doped activated carbon induces high density Cu+ active center for acetylene hydrochlorination [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 193-199. |
[12] | Zhonghao Li, Yuanyuan Yang, Huanong Cheng, Yun Teng, Chao Li, Kangkang Li, Zhou Feng, Hongwei Jin, Xinshun Tan, Shiqing Zheng. Measurement and model of density, viscosity, and hydrogen sulfide solubility in ferric chloride/trioctylmethylammonium chloride ionic liquid [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 210-221. |
[13] | Tingjun Fu, Ran Wang, Kun Ren, Liangliang Zhang, Zhong Li. Intensified shape selectivity and alkylation reaction for the two-step conversion of methanol aromatization to p-xylene [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 240-250. |
[14] | Qunfeng Zhang, Bingcheng Li, Yuan Zhou, Deshuo Zhang, Chunshan Lu, Feng Feng, Jinghui Lv, Qingtao Wang, Xiaonian Li. Regulation of the selective hydrogenation performance of sulfur-doped carbon-supported palladium on chloronitrobenzene [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 69-75. |
[15] | Jiajia Chen, Xinyu Lu, Dandan Wang, Pengcheng Xiu, Xiaoli Gu. Effective depolymerization of alkali lignin using an attapulgite-Ce0.75Zr0.25O2(ATP-CZO)-supported cobalt catalyst in ethanol/isopropanol media [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 50-62. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||