[1] J. Hu, C. Chen, X. Zhu, X. Wang, Removal of chromium from aqueous solution by using oxidized multiwalled carbon nanotubes, J. Hazard. Mater. 162(2009) 1542-1550. [2] A. Verma, S. Chakraborty, J.K. Basu, Adsorption study of hexavalent chromium using tamarind hull-based adsorbents, Sep. Purif. Technol. 50(2006) 336-341. [3] B. Saha, C. Orvig, Biosorbents for hexavalent chromium elimination from industrial and municipal effluents, Coord. Chem. Rev. 254(2010) 2959-2972. [4] Y.J. Xu, R. Arrigo, X. Liu, D.S. Su, Characterization and use of functionalized carbon nanotubes for the adsorption of heavy metal anions, Xinxing Tan Cailiao/New Carbon Mater. 26(2011) 57-62. [5] N.H. Hsu, S.L. Wang, Y.H. Liao, S.T. Huang, Y.M. Tzou, Y.M. Huang, Removal of hexavalent chromium from acidic aqueous solutions using rice straw-derived carbon, J. Hazard. Mater. 171(2009) 1066-1070. [6] Y.C. Sharma, V. Srivastava, V.K. Singh, S.N. Kaul, C.H. Weng, Nano-adsorbents for the removal of metallic pollutants from water and wastewater, Environ. Technol. 30(2009) 583-609. [7] V.K. Gupta, A. Rastogi, A. Nayak, Adsorption studies on the removal of hexavalent chromium from aqueous solution using a low cost fertilizer industry waste material, J. Colloid Interface Sci. 342(2010) 135-141. [8] Z.C. Di, J. Ding, X.J. Peng, Y.H. Li, Z.K. Luan, J. Liang, Chromium adsorption by aligned carbon nanotubes supported ceria nanoparticles, Chemosphere 62(2006) 861-865. [9] M. Owlad, M.K. Aroua, W.M.A. Wan Daud, Hexavalent chromium adsorption on impregnated palm shell activated carbon with polyethyleneimine, Bioresour. Technol. 101(2010) 5098-5103. [10] Y. Jung, C. Heo, J. Han, J. Her, N. Lee, S.J. Oh, J. Yoon, Hexavalent chromium removal by various adsorbents:Powdered activated carbon, chitosan, and single/multiwalled carbon nanotubes, Sep. Purif. Technol. 106(2013) 63-71. [11] E.E. Pérez-Ramírez, G. De La Rosa-Álvarez, P. Salas, C. Velasco-Santos, A.L. MartínezHernández, Comparison as effective photocatalyst or adsorbent of carbon materials of one, two, and three dimensions for the removal of reactive red 2 in water, Environ. Sci. Technol. 32(2015) 872-880. [12] M. Bhaumik, A. Maity, V.V. Srinivasu, M.S. Onyango, Removal of hexavalent chromium from aqueous solution using polypyrrole-polyaniline nanofibers, Chem. Eng. J. 181-182(2012) 323-333. [13] K. Pillay, E.M. Cukrowska, N.J. Coville, Multi-walled carbon nanotubes as adsorbents for the removal of parts per billion levels of hexavalent chromium from aqueous solution, J. Hazard. Mater. 166(2009) 1067-1075. [14] D. Mohan, C.U. Pittman, Activated carbons and low cost adsorbents for remediation of tri- and hexavalent chromium from water, J. Hazard. Mater. 137(2006) 762-811. [15] K.A. Mkhoyan, A.W. Contryman, J. Silcox, A. Derek, G. Eda, C. Mattevi, S. Miller, M. Chhowalla, K.A. Mkhoyan, A.W. Contryman, J. Silcox, D.A. Stewart, G. Eda, C. Mattevi, S. Miller, Atomic and electronic structure of graphene-oxide, 9(2009) 1058-1063. [16] D. Zhang, X. Liu, X. Wang, Green synthesis of graphene oxide sheets decorated by silver nanoprisms and their anti-bacterial properties, J. Inorg. Biochem. 105(2011) 1181-1186. [17] H. Guo, X. Wang, Q. Qian, F. Wang, X. Xia, A green approach to the synthesis of, ACS Nano 3(2009) 2653-2659. [18] K. Zhang, V. Dwivedi, C. Chi, J. Wu, Graphene oxide/ferric hydroxide composites for efficient arsenate removal from drinking water, J. Hazard. Mater. 182(2010) 162-168. [19] P. Khanra, T. Kuila, N.H. Kim, S.H. Bae, D. Sheng Yu, J.H. Lee, Simultaneous biofunctionalization and reduction of graphene oxide by baker's yeast, Chem. Eng. J. 183(2012) 526-533. [20] M. Iliut, C. Leordean, V. Canpean, C.-M. Teodorescu, S. Astilean, A new green, ascorbic acid-assisted method for versatile synthesis of Au-graphene hybrids as efficient surface-enhanced Raman scattering platforms, J. Mater. Chem. C 1(2013) 4094-4104. [21] M. de la Luz-Asunción, V. Sánchez-Mendieta, A.L. Martínez-Hernández, V.M. Castaño, C. Velasco-Santos, Adsorption of phenol from aqueous solutions by carbon nanomaterials of one and two dimensions:Kinetic and equilibrium studies, J. Nanomater. 16(2015) 422-437. [22] T. Mahmood, M.T. Saddique, A. Naeem, P. Westerho, S. Mustafa, Comparison of Different Methods for the Point of Zero Charge Determination of NiO Comparison of Different Methods for the Point of Zero Charge Determination of NiO, 201110017-10023. [23] Q.S. Liu, T. Zheng, P. Wang, J.P. Jiang, N. Li, Adsorption isotherm, kinetic and mechanism studies of some substituted phenols on activated carbon fibers, Chem. Eng. J. 157(2010) 348-356. [24] K.V. Kumar, Linear and non-linear regression analysis for the sorption kinetics of methylene blue onto activated carbon, J. Hazard. Mater. 137(2006) 1538-1544. [25] J. Lin, L. Wang, Comparison between linear and non-linear forms of pseudo-first-order and pseudo-second-order adsorption kinetic models for the removal of methylene blue by activated carbon, Front. Environ. Sci. Eng. China 3(2009) 320-324. [26] L.J. Kennedy, J.J. Vijaya, K. Kayalvizhi, G. Sekaran, Adsorption of phenol from aqueous solutions using mesoporous carbon prepared by two-stage process, Chem. Eng. J. 132(2007) 279-287. [27] D.C. Sharma, C.E. Forster, A preliminary examination into the adsorption of hexavalent chromium using low-cost adsorbents, Langmuir 47(1994) 257-264. [28] M. Puigdomenech, I. Zagorodni, A. Wang, Program MEDUSA (make equilibrium diagrams using sophisticated algorithms), Dep. Inorg. Chem. (2009). [29] J. Kong, Q. Yue, S. Sun, B. Gao, Y. Kan, Q. Li, Y. Wang, Adsorption of Pb(Ⅱ) from aqueous solution using keratin waste-hide waste:Equilibrium, kinetic and thermodynamic modeling studies, Chem. Eng. J. 241(2014) 393-400. [30] A.R. Netzahuatl-Muñoz, M. Del Carmen Cristiani-Urbina, E. Cristiani-Urbina, Chromium biosorption from Cr(VI) aqueous solutions by Cupressus lusitanica bark:Kinetics, equilibrium and thermodynamic studies, PLoS One 10(2015) 1-23. [31] C.Y. Kuo, Comparison with as-grown and microwave modified carbon nanotubes to removal aqueous bisphenol A, Desalination 249(2009) 976-982. [32] M. Baláž, Z. Bujňáková, P. Baláž, A. Zorkovská, Z. Danková, J. Briančin, Adsorption of cadmium(Ⅱ) on waste biomaterial, J. Colloid Interface Sci. 454(2015) 121-133. [33] N. Calace, E. Nardi, B.M. Petronio, M. Pietroletti, Adsorption of phenols by papermill sludges, Environ. Pollut. 118(2002) 315-319. [34] I. Tosun, Ammonium removal from aqueous solutions by clinoptilolite:Determination of isotherm and thermodynamic parameters and comparison of kinetics by the double exponential model and conventional kinetic models, Int. J. Environ. Res. Public Health 9(2012) 970-984. [35] D. Giles, C.H. MacEwan, T.H. Nakhwa, S.N. Smith, Studies in adsorption. Part XI. A system of classification of solution adsorption isotherms, and its use in diagnosis of adsorption mechanisms and in measurement of specific surface areas of solids, J. Chem. Soc. (1960) 3973-3993. |