[1] A.-u.-H.A. Shah, K. Ali, S. Bilal, Surface tension, surface excess concentration, enthalpy and entropy of surface formation of aqueous salt solutions, Colloids Surf. A Physicochem. Eng. Asp. 417(2013) 183-190. [2] G. Vázquez, E. Alvarez, J.M. Navaza, et al., Surface tension of binary mixtures of water + monoethanolamine and water +2-amino-2-methyl-1-propanol and tertiary mixtures of these amines with water from 25℃ to 50℃, J. Chem. Eng. Data 42(1) (1997) 57-59. [3] H.K. Manchanda, M. Singla, A. Khosla, et al., Volumetric and surface properties of aqueous mixtures of polyethers at T=(298.15, 308.15, and 318.15) K, J. Chem. Eng. Data 56(5) (2011) 2669-2676. [4] D. Fu, F. Liu, Z. Li, Surface tensions of carbonated 2-amino-2-methyl-1-propanol and piperazine aqueous solutions, Chem. Eng. Technol. 36(11) (2013) 1859-1864. [5] B.P. Mandal, M. Guha, A.K. Biswas, et al., Removal of carbon dioxide by absorption in mixed amines:Modelling of absorption in aqueous MDEA/MEA and AMP/MEA solutions, Chem. Eng. Sci. 56(21-22) (2001) 6217-6224. [6] P.W. Derks, K.J. Hogendoorn, G.F. Versteeg, Solubility of N2O in and density, viscosity, and surface tension of aqueous Piperazine solutions, J. Chem. Eng. Data 50(6) (2005) 1947-1950. [7] J.-G. Lu, Y. Ji, H. Zhang, et al., CO2 capture using activated amino acid salt solutions in a membrane contactor, Sep. Sci. Technol. 45(9) (2010) 1240-1251. [8] C.-S. Tan, J.-E. Chen, Absorption of carbon dioxide with piperazine and its mixtures in a rotating packed bed, Sep. Purif. Technol. 49(2) (2006) 174-180. [9] A.F. Portugal, J.M. Sousa, F.D. Magalhães, et al., Solubility of carbon dioxide in aqueous solutions of amino acid salts, Chem. Eng. Sci. 64(9) (2009) 1993-2002. [10] U.E. Aronu, A. Hartono, H.F. Svendsen, Kinetics of carbon dioxide absorption into aqueous amine amino acid salt:3-(Methylamino)propylamine/sarcosine solution, Chem. Eng. Sci. 66(23) (2011) 6109-6119. [11] J.T. Cullinane, G.T. Rochelle, Kinetics of carbon dioxide absorption into aqueous potassium carbonate and piperazine, Ind. Eng. Chem. Res. 45(8) (2006) 2531-2545. [12] H. Jo, M.-g. Lee, B. Kim, et al., Density and solubility of CO2 in aqueous solutions of (potassium carbonate + sarcosine) and (potassium carbonate + Pipecolic acid), J. Chem. Eng. Data 57(12) (2012) 3624-3627. [13] S.M. Shuaib, A.M. Shariff, M.A. Bustam, et al., Physical properties of aqueous solutions of potassium carbonate + glycine as a solvent for carbon dioxide removal, J. Serb. Chem. Soc. 79(6) (2014) 719-727. [14] F. Harris, K.A. Kurnia, M.I.A. Mutalib, et al., Solubilities of carbon dioxide and densities of aqueous sodium glycinate solutions before and after CO2 absorption, J. Chem. Eng. Data 54(1) (2009) 144-147. [15] M.S. Shaikh, A.M. Shariff, M.A. Bustam, et al., Physicochemical properties of aqueous solutions of sodium L-prolinate as an absorbent for CO2 removal, J. Chem. Eng. Data 59(2) (2014) 362-368. [16] M.E. Majchrowicz, D.W.F. Brilman, Solubility of CO2 in aqueous potassium Lprolinate solutions-Absorber conditions, Chem. Eng. Sci. 72(2012) 35-44. [17] M.S. Shaikh, A.M. Shariff, M.A. Bustam, et al., Measurement and prediction of physical properties of aqueous sodium L-prolinate and piperazine as a solvent blend for CO2 removal, Chem. Eng. Res. Des. 102(2015) 378-388. [18] S. Ahadian, S. Moradian, F. Sharif, et al., Application of artificial neural network (ANN) in order to predict the surface free energy of powders using the capillary rise method, Colloids Surf. A Physicochem. Eng. Asp. 302(1-3) (2007) 280-285. [19] K. Golzar, S. Amjad-Iranagh, H. Modarress, Prediction of thermophysical properties for binary mixtures of common ionic liquids with water or alcohol at several temperatures and atmospheric pressure by means of artificial neural network, Ind. Eng. Chem. Res. 53(17) (2014) 7247-7262. [20] R. Afshar Ghotli, A.R. Abdul Aziz, I.M. Atadashi, et al., Selected physical properties of binary mixtures of crude glycerol and methanol at various temperatures, J. Ind. Eng. Chem. 21(2015) 1039-1043. [21] S. Garg, A.M. Shariff, M.S. Shaikh, et al., Selected physical properties of aqueous potassium salt of L-phenylalanine as a solvent for CO2 capture, Chem. Eng. Res. Des. 113(2016) 169-181. [22] S. Garg, A. Shariff, M. Shaikh, et al., Surface tension and derived surface thermodynamic properties of aqueous sodium salt of L-phenylalanine, Indian J. Sci. Technol. 9(29) (2016), https://doi.org/10.17485/ijst/2016/v9i29/92903. [23] J.-G. Lu, F. Fan, C. Liu, et al., Density, viscosity, and surface tension of aqueous solutions of potassium glycinate + piperazine in the range of (288.15 to 323.15) K, J. Chem. Eng. Data 56(5) (2011) 2706-2709. [24] K. Ali, A.-u.-H.A. Shah, S. Bilal, et al., Thermodynamic parameters of surface formation of some aqueous salt solutions, Colloids Surf. A Physicochem. Eng. Asp. 330(1) (2008) 28-34. [25] K. Ali, A.-u.-H.A. Shah, S. Bilal, et al., Surface tensions and thermodynamic parameters of surface formation of aqueous salt solutions:III. Aqueous solution of KCl, KBr and KI, Colloids Surf. A Physicochem. Eng. Asp. 337(1-3) (2009) 194-199. [26] S. Lee, S.-I. Choi, S. Maken, et al., Physical properties of aqueous sodium glycinate solution as an absorbent for carbon dioxide removal, J. Chem. Eng. Data 50(5) (2005) 1773-1776. [27] K.C. Lethesh, S.N. Shah, M.I. Abdul Mutalib, Synthesis, characterization, physical and thermodynamic properties of diazobicyclo undecene based dicyanamide ionic liquids, J. Mol. Liq. 208(2015) 253-258. [28] K.C. Lethesh, S.N. Shah, M.I.A. Mutalib, Synthesis, characterization, and thermophysical properties of 1,8-diazobicyclo[5.4.0] undec-7-ene based thiocyanate ionic liquids, J. Chem. Eng. Data 59(6) (2014) 1788-1795. [29] S.S. Navarro, R.B. Leron, A.N. Soriano, et al., Thermophysical property characterization of aqueous amino acid salt solution containing serine, J. Chem. Thermodyn. 78(0) (2014) 23-31. [30] S. Norouzbahari, S. Shahhosseini, A. Ghaemi, Modeling of CO2 loading in aqueous solutions of piperazine:Application of an enhanced artificial neural network algorithm, J. Nat. Gas Sci. Eng. 24(2015) 18-25. [31] D. Bastani, M.E. Hamzehie, F. Davardoost, et al., Prediction of CO2 loading capacity of chemical absorbents using a multi-layer perceptron neural network, Fluid Phase Equilib. 354(2013) 6-11. [32] M.E. Hamzehie, S. Mazinani, F. Davardoost, et al., Developing a feed forward multilayer neural network model for prediction of CO2 solubility in blended aqueous amine solutions, J. Nat. Gas Sci. Eng. 21(2014) 19-25. [33] M. Mirarab, M. Sharifi, B. Behzadi, et al., Intelligent prediction of CO2 capture in propyl amine methyl imidazole alanine ionic liquid:an artificial neural network model, Sep. Sci. Technol. 50(1) (2014) 26-37. [34] M.E. Hamzehie, H. Najibi, Prediction of carbon dioxide loading capacity in amino acid salt solutions as new absorbents using artificial neural network and Deshmukh-Mather models, J. Nat. Gas Sci. Eng. 27(Part 2) (2015) 676-685. [35] R. Sharma, D. Singhal, R. Ghosh, et al., Potential applications of artificial neural networks to thermodynamics:Vapor-liquid equilibrium predictions, Comput. Chem. Eng. 23(3) (1999) 385-390. [36] M. Mirarab, M. Sharifi, M.A. Ghayyem, et al., Prediction of solubility of CO2 in ethanol-[EMIM] [Tf2N] ionic liquid mixtures using artificial neural networks based on genetic algorithm, Fluid Phase Equilib. 371(2014) 6-14. [37] B.A. Reza, F. Sabzi, M. Bahmani, Prediction of solubility of sulfur dioxide in ionic liquids using artificial neural network, J. Mol. Liq. 211(2015) 395-400. [38] E. Ali, F. Gharagheizi, A.H. Mohammadi, et al., Artificial neural network modeling of solubility of supercritical carbon dioxide in 24 commonly used ionic liquids, Chem. Eng. Sci. 66(13) (2011) 3039-3044. [39] S. Garg, A.M. Shariff, M.S. Shaikh, et al., Measurement and prediction of physical properties of aqueous sodium salt of L-phenylalanine, J. Serb. Chem. Soc. 82(7-8) (2017) 905-919. [40] Ronald Aylmer Fisher, Statistical methods for research workers, in:Breakthroughs in Statistics, Springer, New York, NY, 1992, pp. 66-70. [41] E.B. Rinker, D.W. Oelschlager, A.T. Colussi, et al., Viscosity, density, and surface tension of binary mixtures of water and N-methyldiethanolamine and water and diethanolamine and tertiary mixtures of these amines with water over the temperature range 20-100℃, J. Chem. Eng. Data 39(2) (1994) 392-395. |